检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:兰先圣 唐美玲[1] 盛伟[1] LAN Xiansheng;TANG Meiing;SHENG Wei(School of Energy and Power and Nuclear Technology Engineering,Shenyang Institute of Engineering,Shenyang 110136,Liaoning Province)
机构地区:[1]沈阳工程学院能源动力与核技术工程学院,辽宁沈阳110136
出 处:《沈阳工程学院学报(自然科学版)》2025年第2期90-96,共7页Journal of Shenyang Institute of Engineering:Natural Science
摘 要:在研究纳米有机工质导热系数问题时,为了避免仪器测量的操作烦琐和理论公式的计算误差,并能快速准确地得到纳米有机工质的导热系数,建立基于遗传算法优化的BP神经网络预测模型。将纳米有机工质的种类、温度、纳米颗粒的粒径和体积分数作为神经网络的参考变量,将纳米有机工质的导热系数作为结果,对纳米有机工质导热系数进行非线性预测,预测结果与实验数据高度吻合,证明预测误差很小。对比未优化的BP神经网络,遗传算法优化后的BP神经网络预测精度更高。When studying the thermal conductivity of nano organic working medium,in order to avoid the cumbersome operation of instrument measurement and the calculation error of theoretical formulas,and to quickly and accurately obtain the thermal conductivity of nano organic working medium,this paper establishes a BP neural network prediction model based on genetic algorithm optimization.The type,temperature,particle size,and volume fraction of nano organic working medium are used as reference variables for the neural network,and the thermal conductivity of nano organic working medium as the result,nonlinear prediction of the thermal conductivity of nano organic working medium is carried out.The predicted results are highly consistent with experimental data,which proves that the prediction error is very small.This model can be used to predict the thermal conductivity of nano organic working medium.Compared to the unoptimized BP neural network,the BP neural network optimized by genetic algorithm has higher prediction accuracy.
分 类 号:TK124[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38