Trajectory optimization of near-Earth asteroids exploration by using reusable probes from cislunar space  

在线阅读下载全文

作  者:Kaiduo WANG Youliang WANG Bowen DONG Jiening ZHAO Quan JING Mingtao LI Xizheng YU Jianhua ZHENG 

机构地区:[1]National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China [2]University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Chinese Journal of Aeronautics》2025年第3期355-373,共19页中国航空学报(英文版)

摘  要:Implementing the flyby to Near-Earth Asteroids (NEAs) with the potential impact risks to the Earth allows for obtaining detailed physical parameters, thereby supporting the high-precision orbit prediction and planetary defense strategy. Different from those conducted asteroid flyby missions, in the 12th China Trajectory Optimization Competition (CTOC-12), a NEAs flyby trajectory design problem using reusable probes that depart from a Lunar Distant Retrograde Orbit (DRO) station in the cislunar space was released. The objective was flyby to as many NEAs as possible using up to 20 probes within a total of 10 years. The ∑ team proposed a solution that can explore 47 NEAs using 11 probes, ranking the first in the competition. In this paper, the methods and results from the winning team are introduced, including mission analysis and preliminary design, and low-energy transfer trajectory optimization. In particular, a round-trip trajectory is divided into three phases: deep space transfer, indirect transfer between the Earth to DRO, and DRO phasing and rendezvous. With the combination of global optimization and local optimization algorithms, the required velocity increments to change the orbital planes are effectively reduced, thus increasing the number of the explored NEAs. The final solution of our team is presented and the results are compared with those of the top three teams. The competition demonstrates that the regularization of flyby missions from the cislunar space to explore NEAs with the potential impact risks to the Earth is the feasible and promising.

关 键 词:ASTEROIDS Low-energy transfer Cislunar space Distant Retrograde 0rbit(DRO) Phasing strategy 

分 类 号:V476[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象