检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiao-feng Qiu Run-hao Zhang Jian Yang
出 处:《Journal of Iron and Steel Research International》2025年第3期578-593,共16页钢铁研究学报(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.U1960202);the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200).
摘 要:To predict the endpoint carbon content and temperature in basic oxygen furnace (BOF), the industrial parameters of BOF steelmaking are taken as input values. Firstly, a series of preprocessing works such as the Pauta criterion, hierarchical clustering, and principal component analysis on the original data were performed. Secondly, the prediction results of classic machine learning models of ridge regression, support vector machine, gradient boosting regression (GBR), random forest regression, back-propagation (BP) neural network models, and multi-layer perceptron (MLP) were compared before and after data preprocessing. An improved model was established based on the improved sparrow algorithm and BP using tent chaotic mapping (CSSA-BP). The CSSA-BP model showed the best performance for endpoint carbon prediction with the lowest mean absolute error (MAE) and root mean square error (RMSE) values of 0.01124 and 0.01345 mass% among seven models, respectively. And the lowest MAE and RMSE values of 8.9839 and 10.9321 ℃ for endpoint temperature prediction were obtained among seven models, respectively. Furthermore, the CSSA-BP and GBR models have the smallest error fluctuation range in both endpoint carbon content and temperature predictions. Finally, in order to improve the interpretability of the model, SHapley additive interpretation (SHAP) was used to analyze the results.
关 键 词:BOF steelmaking Principal component analysis Hierarchical clustering CSSA-BP SHapley additive interpretation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200