Suppressing high voltage chemo-mechanical degradation in single crystal nickel-rich cathodes for high-performance all-solid-state lithium batteries  

在线阅读下载全文

作  者:Yirong Xiao Le Yang Chaoyuan Zeng Ze Hua Shuangquan Qu Niaz Ahmad Ruiwen Shao Wen Yang 

机构地区:[1]Key Laboratory of Cluster Science of Ministry of Education,Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,School of Chemistry and Chemical Engineering,Beijing Institute of Technology,Beijing 100081,China [2]Beijing Advanced Innovation Center for Intelligent Robots and Systems,School of Medical Technology,Beijing Institute of Technology,Beijing 100081,China [3]School of Chemistry and Chemical Engineering,Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources,Collaborative Innovation Center of Ecological Civilization,Hainan University,Haikou 570228,Hainan,China

出  处:《Journal of Energy Chemistry》2025年第3期377-385,共9页能源化学(英文版)

基  金:supported by the Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ232,ZDYF2023GXJS022);the Hainan Province Postdoctoral Science Foundation(300333);the National Natural Science Foundation of China(21203008,21975025,12274025,22372008)。

摘  要:Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn0_(.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.

关 键 词:Single crystal nickel-rich oxide cathode Lattice stretches and distortions Reaction heterogeneity Percolation network All-solid-state lithium batteries 

分 类 号:TM912[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象