A GENERALIZED CHOQUARD EQUATION WITH WEIGHTED ANISOTROPIC STEIN-WEISS POTENTIAL ON A NONREFLEXIVE ORLICZ-SOBOLEV SPACES  

在线阅读下载全文

作  者:Lucas DA SILVA Marco A.S.SOUTO 

机构地区:[1]Unidade Academica de Matematica,Federal University of Campina Grande,Campina Gran Paraiba 58429-970,Brazil

出  处:《Acta Mathematica Scientia》2025年第2期569-601,共33页数学物理学报(B辑英文版)

基  金:supported by FAPESQ/Brazil(Grant No.3031/2021);supported by CNPq/Brazil(Grant No.309.692/2020-2)and FAPESQ/Brazil(Grant No.3031/2021).

摘  要:In this paper we investigate the existence of solution for the following nonlocal problem with Stein-Weiss convolution term-△Φu+V(x)Φ(|u|)u=1/|x|α(∫R^(N)K(y)F(u(y))/|x-y|Y(λ)|y|^(α)dy)K(x)f(u(x)),x∈R^(N),where a≥0,N≥2,λ>0 is a positive parameter,V,K∈C(R^(N),[0,∞))are nonne-gative functions that may vanish at infinity,the function f E C(R,R)is quasicritical and F(t)=∫_(0)^(t)f(s)ds.To establish our existence and regularity results,we use the Hardy-type inequalities for Orlicz-Sobolev Space and the Stein-Weiss inequality together with a varia-tional technique based on the mountain pass theorem for a functional that is not necessarily in C'.Furthermore,we also prove the existence of a ground state solution by the method of Nehari manifold in the case where the strict monotonicity condition on f is not required.This work incorporates the case where the N-functionΦdoes not verify the△_(2)-condition.

关 键 词:Orlicz-Sobolev spaces variational methods Choquard equation nonrefexive spaces 

分 类 号:O175.25[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象