检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孔建国[1] 张向伟 赵志伟 梁海军[1] KONG Jianguo;ZHANG Xiangwei;ZHAO Zhiwei;LIANG Haijun(College of Ar Traffic Management,Civil Aviation Flight University of China,Guanghan 618307,China)
机构地区:[1]中国民用航空飞行学院空中交通管理学院,四川广汉618307
出 处:《电讯技术》2025年第4期495-502,共8页Telecommunication Engineering
基 金:国家重点研发计划(2021YFF0603904);中央高校基本科研业务费专项资金资助(PHD2023-035,ZHMH2022-009);中央高校基本科研业务费资助项目(24CAFUC10192)。
摘 要:为克服机场飞鸟检测中人工观测准确率低、速度慢、雷达探测造价高的缺点,保障民航安全运行,采用深度学习目标检测算法实现对机场附近飞鸟的精确感知。为提高YOLOv8对重要特征的关注度,在颈部添加高效通道注意力(Efficient Channel Attention,ECA),使网络在增加少量参数的情况下获得较明显的精度提升。提出多分支C3(Multi-branch C3,MBC3)模块,通过引入具有不同感受野的卷积分支结构以增强模块的表达能力。探究了不同网络宽度及深度对模型性能的影响并为模型选择合适的宽度与深度因子。为减少小飞鸟特征丢失问题,提出了浅层特征-路径聚合网络(Shallow Feature-Path Aggregation Network,SF-PAN)。在机场飞鸟数据集上测试,结果表明,改进YOLOv8的mAP@50达到82.9%,相比原YOLOv8提升了2.4%;其速度达到31 frame/s。改进YOLOv8满足机场飞鸟检测实时性和精确性的要求,为复杂环境下机场鸟类检测提供了一种新思路。To overcome the drawbacks of low accuracy and slow speed in manual bird detection at airports,as well as the high cost associated with radar detection,and ensure the safe operation of civil aviation,deep learning object detection algorithms are used to achieve accurate perception of birds near airports.To enhance the network̓s focus on crucial features,an Efficient Channel Attention(ECA)attention mechanism is incorporated into the Neck,resulting in a significant improvement in accuracy while adding a small number of parameters.The Muti-branch C3(MBC3)module is designed to strengthen the model̓s expressive capability by introducing branches with different receptive fields.The impact of different network widths and depths on model performance is explored,and appropriate width and depth factors for the model are selected.The Shallow Feature-Path Aggregation Network(SF-PAN)structure is proposed to address the issue of feature loss in detecting small bird targets.Testing on an airport bird dataset demonstrates that the modified YOLOv8 achieves a mAP@50 of 82.9%,showcasing a 2.4%improvement over the original YOLOv8,while maintaining a speed of 31 frames per second.The improved YOLOv8 meets the requirements for real-time and accurate detection of birds at airports and offeres a new approach to bird detection in complex airport environments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249