流化床技术:CCS和脱碳应用中的挑战与前景  

Fluidized bed technology:Challenges and prospects in CCS and decarbonization applications

在线阅读下载全文

作  者:陆勇[1] 李林 孙镇坤 段伦博[1] LU Yong;LI Lin;SUN Zhenkun;DUAN Lunbo(Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education,School of Energy and Environment,Southeast University,Nanjing 210096,China)

机构地区:[1]东南大学能源与环境学院东南大学能源热转换及其过程测控教育部重点实验室,江苏南京210096

出  处:《洁净煤技术》2025年第3期1-16,共16页Clean Coal Technology

基  金:国家自然科学基金资助项目(U22A20435);东南大学科研启动基金资助项目(RF1028623358)。

摘  要:流化床反应器(FBR)作为碳捕集与封存(CCS)及工业脱碳的核心技术,凭借其高效传热传质、操作灵活及规模化潜力,已成为降低工业CO_(2)排放的关键路径。系统梳理了FBR在燃烧前、中、后三阶段的碳捕集技术进展:燃烧前阶段通过气化工艺将固体燃料转化为高纯度合成气,结合钙基吸附剂强化CO_(2)分离效率;燃烧中碳捕集技术聚焦富氧燃烧与化学链燃烧(CLC),利用流态化特性优化燃烧条件,实现烟气中CO_(2)体积分数提升至80%以上;燃烧后技术则依托钙循环(CaL)与碱基吸附剂循环,通过FBR的连续操作实现高效吸附−再生循环。此外,太阳能与电加热技术的创新融合进一步拓展了FBR的低碳应用场景——太阳能驱动的高温煅烧与钙循环耦合可减少化石燃料供热产生的CO_(2)排放并降低30%的能耗,而电加热流化床通过精准温控与快速响应特性,为生物质气化、吸附剂再生及水泥煅烧等过程提供零碳解决方案。然而,FBR的规模化推广仍面临多重瓶颈:吸附剂循环稳定性不足(如烧结导致的孔隙结构坍塌与表面钝化使得钙基材料经10次循环后活性下降40%)、设备磨损与高温腐蚀(SiC涂层可降低70%磨损率但仍需优化)、高能耗(煅烧需900~950℃)及工艺集成复杂性(如CLC需同步控制燃料反应器、空气反应器与载氧体循环倍率)。面向碳中和目标,未来研究需多维度突破:①开发高稳定性吸附材料(如纳米改性钙基吸附剂、金属有机框架(MOF)材料);②设计多级集成反应器(如鼓泡−输运耦合系统)以优化传质与热管理;③结合CFD多尺度建模与AI实时控制,提升系统动态响应能力;④推动跨领域协同创新,政策层面需完善碳定价机制、加大试点项目资助,并通过国际合作加速技术标准化进程。通过融合可再生能源、智能控制与材料创新,FBR技术有望在电力、水泥、钢铁等高碳行业实现深度脱碳,为全球能�Fluidized bed reactors(FBRs),with their superior heat/mass transfer efficiency,operational flexibility,and scalability,have emerged as a cornerstone technology for carbon capture and storage(CCS)and industrial decarbonization.This review comprehensively analyzes the advancements of FBR applications across pre-,mid-,and post-combustion carbon capture stages.In precombustion,FBRs enable efficient fuel gasification into syngas,enhanced by calcium-based adsorbents for CO_(2)separation;midcombustion techniques,including oxy-fuel combustion and chemical looping combustion(CLC),leverage fluidization dynamics to achieve flue gas CO_(2)concentration exceeding 80%;post-combustion capture relies on calcium looping(CaL)and alkali-based adsorbent cycles,capitalizing on FBRs’continuous operation for high-efficiency CO_(2)adsorption-regeneration.Innovations integrat-ing solar and electric heating further expand FBRs’decarbonization potential:solar-driven calcination coupled with CaL reduces CO_(2)emissions from fossil fuel combustion and decreases energy consumption by 30%,while electric heating offers precise temperature control for zero-carbon processes like biomass gasification and cement calcination.However,challenges persist in scaling FBRs,including adsorbent degradation(e.g.,40%activity loss in CaO after 10 cycles resulted from the collapse of pore structure and surface passivation),equipment erosion(SiC coatings reduce wear by 70%but require optimization),high energy demands(calcination at 900−950℃),and process integration complexities(e.g.,dynamic coordination in CLC multi-reactor systems and circulation factor of oxygen carriers).To achieve carbon neutrality,future research must prioritize:①developing stable adsorbents(e.g.,nano-modified CaO,MOFs);②designing multi-stage reactors(e.g.,bubbling-transport coupled systems)for optimized mass/heat transfer;③integrating CFD multi-scale modeling with AI-driven real-time control;and④fostering cross-disciplinary innovations,such as plasma heating and microwave-a

关 键 词:流化床反应器 碳捕集与封存 脱碳技术 太阳能 电加热 

分 类 号:TK114[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象