基于VMD和广义延拓逼近的时间差估计算法  

Time Difference Estimation Algorithm Based on VMD and Generalized Extended Approximation

在线阅读下载全文

作  者:肖江宁 尚俊娜[1] 霍刚 XIAO Jiangning;SHANG Junna;HUO Gang(School of Communication Engineering,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)

机构地区:[1]杭州电子科技大学通信工程学院,浙江杭州310018

出  处:《传感技术学报》2025年第3期468-476,共9页Chinese Journal of Sensors and Actuators

基  金:国家自然科学基金项目(51974151);辽宁省教育厅重点实验室项目(LJZS003);辽宁省教育厅辽宁省高等学校基本科研项目(LJ2017QL012);辽宁省教育厅科技项目(LJ2019QL015)。

摘  要:由于相关类时差估计算法在低信噪比情况下,其相关函数包络的峰值波动较大,从而严重影响时差估计的准确性,提出了一种基于变分模态分解和广义延拓逼近的时差估计算法。该算法主要从信号接收端、信号处理端和相关函数峰值取值这三个方面进行优化。在信号接收端,分别利用变分模态分解和小波阈值降噪对接收信号进行降噪处理;在信号处理端,利用广义二次相关法得到相关函数包络;最后采用广义延拓逼近法对相关函数包络的谱峰进行插值处理。实验结果表明,所提算法的均方根误差远小于广义二次相关法。Since the peak value of the correlation function envelope of the correlation class time difference estimation algorithm fluctuates greatly in the case of low signal-to-noise ratio,thus seriously affecting the accuracy of time difference estimation,a time differ-ence estimation algorithm based on variational modal decomposition and generalized extended topological approximation is proposed.The algorithm is optimized from three aspects,namely,the signal receiving side,the signal processing side and the peak value of the correla-tion function.At the signal receiving end,the received signal is noise-reduced by using the variational modal decomposition and wavelet threshold noise reduction respectively.At the signal processing end,the correlation function envelope is obtained by using the general-ized quadratic correlation method.Finally,the spectral peaks of the correlation function envelope are interpolated by using the general-ized extended approximation method.The experimental results show that the root mean square error of the proposed algorithm is much smaller than that of the generalized quadratic correlation method.

关 键 词:无源定位 时差估计算法 广义二次互相关 变分模态分解 小波阈值降噪 广义延拓逼近法 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象