考虑易腐品的越库中心车辆调度研究  

Research on Truck Scheduling in Cross-Docking Centers for Perishable Goods

在线阅读下载全文

作  者:范春阳 潘飞 Chunyang Fan;Fei Pan(Business School,University of Shanghai for Science and Technology,Shanghai)

机构地区:[1]上海理工大学管理学院,上海

出  处:《建模与仿真》2025年第3期52-65,共14页Modeling and Simulation

基  金:上海市白玉兰人才计划浦江项目(23PJC074);国家自然科学基金(72202137)。

摘  要:随着物流行业竞争加剧,越库配送模式逐渐得到推广,尤其在易腐品物流中展现出明显优势。易腐品因其易变质特性,存储和运输难度大,多次搬运和长时间存储容易加速变质,增加损耗。越库模式通过减少商品的搬运次数和库存存储,提升了物流效率并减少了运输成本。本文提出将越库模式应用于易腐品转运过程的车辆调度,基于最小化总变质质量,构建混合整数数学规划模型,并设计基于车辆排序的遗传算法求解。通过数值分析对比最小化完工时间和最小化总变质质量模型,分析两种不同模型在易腐品越库转运过程中的优劣,为易腐品物流企业的越库实践提供指导,具有重要的现实意义。With the intensification of competition in the logistics industry,the cross-docking distribution model has gradually been promoted and has shown obvious advantages especially in the logistics of perishable products.Perishable products are difficult to store and transport due to their perish-able nature.Multiple handlings and long-term storage are likely to accelerate deterioration and in-crease losses.The cross-docking modelimproves logistics efficiency and reduces transportation costs by reducing the number of times goods are handled and inventory storage.This paper proposes to apply the cross-docking model to truck scheduling in the transshipment process of perishable prod-ucts.Based on minimizing the total deteriorated quality,a mixed integer mathematical program-ming model is constructed,and a genetic algorithm based on truck sequencing is designed for solu-tion.Through numerical analysis,the models of minimizing the makespan and minimizing the total deteriorated quality are compared,and the advantages and disadvantages of the two different mod-els in the cross-docking transshipment process of perishable products are analyzed,which provides guidance for the cross-docking practice of perishable goods logistics enterprises and has important practical significance.

关 键 词:易腐品 越库 车辆调度 遗传算法 

分 类 号:F252[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象