检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李丛 赵雷[1,2] 徐连勇 韩永典[1,2] 郝康达 LI Cong;ZHAO Lei;XU Lianyong;HAN Yongdian;HAO Kangda(School of Materials Science and Engineering,Tianjin University,Tianjin 300350,China;Tianjin Key Laboratory of Modern Connection Technology,Tianjin 300350,China)
机构地区:[1]天津大学材料科学与工程学院,天津300350 [2]天津市现代连接技术重点实验室,天津300350
出 处:《材料导报》2025年第9期122-131,共10页Materials Reports
基 金:国家自然科学基金(52375371)。
摘 要:随着全球能源结构向低碳化转变,氢能作为一种清洁、可再生的能源,正受到越来越多的关注。掺氢/纯氢燃气轮机作为一种高效能源转换技术,为氢能的大规模应用提供了重要支撑。然而,氢气环境下的燃气轮机热端部件面临着氢致损伤的挑战,限制了其长期稳定运行。本文在国内外大量研究成果的基础上,阐述了目前主要的氢损伤机制以及相关影响因素,归纳了氢与镍基高温合金材料微观缺陷(空位、位错、晶界等)相互作用的机理以及临氢环境下氢气对镍基高温合金力学性能的影响。研究表明,氢会导致镍基高温合金的延性下降,但对屈服强度和抗拉强度的影响相对较小。同时,氢对裂纹扩展行为也具有重要的影响,尤其在动态循环加载的条件下,氢加速了疲劳裂纹的扩展。然而,在高温高压条件下,氢致损伤机理的研究以及材料性能的测试仍存在诸多挑战,亟待进一步深入研究和开发专用设备。因此,未来的工作应致力于探索多种机制的协同作用,建立适应高温高压环境下材料性能测试的新标准,以更准确地评估镍基高温合金在掺氢/纯氢燃气轮机等实际工程中的应用前景和安全性能。Amidst the global shift towards low-carbon energy structures,hydrogen energy has emerged as a prominent clean and renewable energy source,garnering increased attention.The utilization of hydrogen-doped or pure hydrogen gas turbines represents a crucial advancement in energy conversion technology,facilitating the widespread adoption of hydrogen energy on a large scale.However,the utilization of gas turbines in hydrogen-rich environments presents significant challenges due to the potential for hydrogen-induced damage,thereby constraining their long-term operational stability.Drawing upon extensive research findings from both domestic and international sources,this paper delineates the principal mechanisms underlying hydrogen-induced damage and elucidates the pertinent influencing factors.Furthermore,it synthesizes the intricate interactions occurring at the microscopic level between hydrogen and nickel-based superalloys,encompassing phenomena such as vacancies,dislocations,and grain boundaries.Research has evidenced that the presence of hydrogen canreduce in the ductility of nickel-based superalloys,although its impact on yield strength and tensile strength appears relatively marginal.Concurrently,hydrogen exerts a notable influence on crack propagation behavior,particularly under conditions of dynamic cyclic loading,whereby it expedites fatigue crack growth rates.Nevertheless,investigating the mechanisms of hydrogen-induced damage and material properties under elevated temperature and pressure poses significant challenges,necessitating further research and advancements in experimental apparatus.Hence,future endeavors should prioritize elucidating the synergistic interplay of multiple mechanisms to establish a novel standard for assessing material performance in high-temperature,high-pressure environments.Such efforts aim to more precisely evaluate the potential applications and safety characteristics of nickel-based superalloys in practical endeavors,such as hydrogen-doped/pure hydrogen gas turbine systems.
分 类 号:TG174[金属学及工艺—金属表面处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7