机构地区:[1]北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室,北京100044 [2]北京交通大学唐山研究院,河北唐山063000 [3]中国汽车技术研究中心有限公司,天津300300 [4]西南交通大学交通运输与物流学院,四川成都611756
出 处:《中国公路学报》2025年第3期13-30,共18页China Journal of Highway and Transport
基 金:国家重点研发计划项目(2022YFB4300400);唐山市科技局项目(236Z0802G)。
摘 要:通信网络的信息数据流与车辆的物理主体融合互动,使得网联自动驾驶车辆组成的编队能够实现快速的、协作的、共享的出行。然而,通信网络面临着信道衰减、资源紧张等挑战,使得车辆的行驶状态存在非线性、扰动随机性和行为不确定性等问题,影响着编队的稳定运行。为降低通信时延等不安全因素对车辆行驶状态产生的不利影响,相应的编队控制方法成为了车辆行驶安全的重要研究内容。为此,从空间计算损耗和信息时效性的角度出发,开展了通信时延下考虑行驶状态时空价值的编队安全控制研究,对增强车辆的内生安全,提升通信网络的鲁棒性能都具有积极的研究价值和现实意义。首先,考虑到信息传输的空间相关性,借鉴通信信号衰减理论,提出了一种基于空间修正的智能驾驶模型(Spatial Adjustment Intelligent Driving Model,SA-IDM),用以归一化多前车通信结构并修正前车状态信息。其次,考虑到信息传输的时间相关性,引入信息年龄(Age of Information,AoI)量化状态信息的时效性,采用频域方法对SA-IDM进行串稳定性分析,推导出能够反映状态信息是否“过时”的AoI临界值,进而转化为表征整个信息传输过程的时间价值,并提出了一种基于信息更新路侧单元的状态信息重传策略。最后,采用实车测试试验和遗传算法对模型参数进行标定,并采用数值仿真验证模型的有效性。试验结果表明:SA-IDM可以抑制领航车的扰动带给编队的影响,当AoI临界值为0.2 s时,可以有效衡量信息的时间价值。状态信息重传策略可保障编队在高时延发生率(Delay Occurrence Rate,DOR)下及时获取信息。当DOR为20%时,SA-IDM的平均间距偏差与IDM相比其降低比例为33.5%;当DOR为70%时,基于信息更新路侧单元的状态信息重传策略与最大AoI重传策略相比,平均间距偏差值的降低比例为21%;此外,SA-IDM编队内靠前和靠后的�Connected and automated vehicles facilitate rapid,collaborative,and shared travel by integrating information flows in the cyber-communication layer with physical entities in the vehicular layer.However,challenges such as channel fading and resource scarcity persist in the cyber communication domain.These issues contribute to system nonlinearity,random disturbances,and behavioral uncertainty during vehicle operation,which thereby undermines platoon stability.Hence,the development of platoon control methods has become a critical area of research for ensuring vehicle safety and mitigating the adverse effects of communication delays on vehicle traveling states.Safety platoon control focuses on considering the spatiotemporal value of the traveling state under communication delays from the perspectives of spatial computing loss and information timeliness.Significant research value and practical implications for enhancing the intrinsic safety of vehicles and the robustness of communication networks are offered.First,by acknowledging the spatial correlation of information transmission,a Spatial Adjustment intelligent driving model(SA-IDM)was developed to normalize the communication structures among multiple preceding vehicles while adjusting the state information based on signal attenuation.Second,by recognizing the temporal correlation of information transmission,the age of information(AoI)was introduced to quantify the timeliness of state information.A frequency domain analysis was conducted to assess the string stability of the SA-IDM and derive an AoI threshold that indicates when information is outdated.This threshold was converted into a time value for the entire transmission process.In addition,a retransmission strategy using an information update roadside unit was proposed.Finally,the model parameters were calibrated using real vehicle tests and a genetic algorithm.Numerical simulations confirm the effectiveness of the proposed model.Results show that SA-IDM can suppress the impacts of disturbances from the leadi
关 键 词:交通工程 编队安全控制 行驶状态时空价值 网联自动驾驶车辆 通信时延 信息年龄 实车测试
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...