检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫章存 胡万欣 张浩然 李佳杰 岳李圣飒 YAN Zhangcun;HU Wanxin;ZHANG Haoran;LI Jiajie;YUE Lishengsa(Key Laboratory of Road and Traffic Engineering Ministry of Education,Tongji University,Shanghai 201804,China;School of Computer Science,South Central Minzu University,Wuhan 430074,China;China Academy of Transportation Science,Beijing 100029,China)
机构地区:[1]同济大学道路与交通工程教育部重点实验室,上海201804 [2]中南民族大学计算机科学学院,武汉430074 [3]交通运输部科学研究院,北京100029
出 处:《综合运输》2025年第3期127-135,173,共10页China Transportation Review
基 金:中南民族大学引进人才科研启动基金自科项目(YZZ18013);大学生创新创业训练计划省级项目(SCX2024043)。
摘 要:道路路面摩擦系数是制定驾驶安全管控策略的关键参数。为精确获取该参数,本研究融合深度卷积生成对抗网络(DCGAN)与残差网络(Resnet)提出非接触式摩擦系数检测框架。包含三步,首先,以沥青混凝土路面为对象设计摩擦系数测量实验,用摆式仪测量不同湿度路面摩擦系数,同步器采集路面图像;其次,关联路面图像与对应摩擦系数建立摩擦系数图像标签数据集,并用DCGAN网络对数据集进行增强,提升场景覆盖度;最后,使用增强数据集训练Resnet摩擦系数检测模型,并设计对比实验验证检测性能。结果:所提检测模型精度达到93.43%,高于MLP-Mixer(90.97%)和ResNet18(92.55%),且在实际数据测试性能稳定。该方法将有效提升摩擦系数检测精度,降低检测成本,为车辆安全管控系统提供准确的路面信息。The road surface friction coefficient is a key factor for making the control strategy of safety driving.To acquire the accuracy friction coefficient of the road surface,a non-contact friction coefficient detection method that combines a Deep Convolutional Generative Adversarial Network(DCGAN)and a Residual Network(Resnet)using the forward video of the vehicle is proposed.This methos consists of three steps:first,we design an experiment to measure the friction coefficient typical urban road pavements and measure the friction coefficient of the pavement surface under different precipitation amounts using a pendulum instrument,at the same,the video sensors capture the image of the road surface.Secondly,we match the road surface image and the friction coefficient values to create an image-labeled friction coefficient dataset.To improve the coverage of the scenario,we augment the friction coeficient dataset by the DCGAN network.Finally,we train the Resnet-50 detection model with the augmented dataset and conduct a comparison experiment to verify the detection performance.The result shows that the accuracy of the ResNet50 is 93.43%,which is higher than that of MLP-Mixer(90.97%)and ResNet18(92.55%).Furthermore,the detection method is stable in real tests.This system improves the accuracy of friction coeficient detection,minimizes detection costs,and provides more accurate information of road surface for driving assistance system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26