深圳市2022-2023年新报告HIV/AIDS患者HIV-1分子传播网络特征  

Molecular transmission network characteristics of newly reported HIV-1 infected patients in Shenzhen City,Guangdong Province,from 2022 to 2023

在线阅读下载全文

作  者:唐虎 杨梓杰 郑陈丽[2] 卫兰 李浩[2] 谭唯[2] 袁苑 戴德磊 袁小洪 陈嘉淳 赵锦 TANG Hu;YANG Zijie;ZHENG Chenli;WEI Lan;LI Hao;TAN Wei;YUAN Yuan;DAI Delei;YUAN Xiaohong;CHEN Jiachun;ZHAO Jin(School of Public Health,Shanxi Medical University,Taiyuan 030001,Shanxi,China;Shenzhen Center for Disease Control and Prevention,Shenzhen 518000,Guangdong,China;School of Public Health,Peking University,Beijing 100191,China;School of Public Health,Shantou University,Shantou 515063,Guangdong,China;School of Public Health,Southern Medical University.Guangzhou 510515,Guangdong,China)

机构地区:[1]山西医科大学公共卫生学院,太原030001 [2]深圳市疾病预防控制中心,广东深圳518000 [3]北京大学公共卫生学院,北京100191 [4]汕头大学公共卫生学院,广东汕头515063 [5]南方医科大学公共卫生学院,广州510515

出  处:《中国艾滋病性病》2025年第3期254-260,共7页Chinese Journal of Aids & STD

基  金:国家自然科学基金(82373651);深圳市医疗卫生三名工程(SZSM202311015);深圳市医学重点学科建设基金(SZXK064);广东省医学科学技术研究基金项目(A2023350)。

摘  要:目的分析2022-2023年深圳市新报告HIV/AIDS患者分子网络特征,发现活跃簇与潜在高危传播者,为精准干预提供参考依据。方法通过艾滋病防治信息系统获取基础信息,收集血样进行pol区扩增测序,使用MEGA6.0进行系统发育分析确定基因型,基因距离法构建分子传播网络,选取全部序列最大成簇基因距离为阈值。采用χ^(2)检验与Logistic回归分析入网与潜在高危传播者影响因素。结果共收集3177份血样,获得2510(79.01%)条有效序列。共发现31种基因型,包括不同亚型、流行重组型(CRF)和独特重组型(URF),主要为CRF07_BC(48.96%),CRF01_AE(27.45%),CRF55_01B(10.64%),其他基因型(12.95%)。在1.0%的基因阈值下,共形成包含5个活跃簇以及1个潜在CRF增长簇在内的289个分子簇,入网率为40.12%(1007/2510)。Logistic回归分析显示:年龄<30岁(aOR=1.334,95%CI:1.017~1.749)、广东省内非深户籍(aOR=1.349,95%CI:1.083~1.681)、MSM(aOR=1.257,95%CI:1.042~1.520)、感染CRF07_BC与CRF55_01B(aOR=1.778,95%CI:1.450~2.180,aOR=2.333,95%CI:1.719~3.167)的HIV/AIDS患者更容易入网。MSM(aOR=1.627,95%CI:1.123~2.357)更可能为潜在高危传播者。结论深圳市HIV疫情主要受流动人口影响,年轻MSM仍然是深圳市HIV感染与传播的最高危人群,是HIV疫情防控的关键。CRF55_01B的传播更有可能发生在深圳市本地,需要重点关注。通过分子网络发现快速扩张活跃簇和潜在CRF增长簇,需要及时进行干预,同时表明有必要在深圳市持续进行分子监测。Objective To analyze the molecular network characteristics of patients with newly reported HIV-1infections in Shenzhen from 2022 to 2023 and to identify active clusters and potential high-risk transmitters to provide references for precision interventions.Methods Data were collected from the Chinese Disease Control and Prevention Information System.Pol gene amplification and sequencing were conducted on patient plasma samples.Phylogenetic analysis was performed using MEGA 6.0 to identify the HIV-1 genotype,and the genetic distance with the highest clustering rate was selected as the threshold for constructing the molecular network.Chi-square tests and logistic regression were conducted to analyze the factors influencing clustering and the potential of being high-risk transmitters.Results A total of 3177 plasma samples were collected,yielding 2510(79.01%)validated sequences.A total of 31 genotypes were identified,including different subtypes,circulating recombinant forms(CRF),and unique recombinant forms(URF),primarily CRF07_BC(48.96%),CRF01_AE(27.45%),CRF55_01B(10.64%),and other strains(12.95%).Under a genetic distance threshold of 1.0%,289 molecular clusters were identified,comprising five active clusters and one potential CRF growth cluster with a clustering rate of 40.12%(1007/2510).Logistic regression analysis showed that patients aged<30 years(aOR=1.334,95%CI:1.017-1.749),with a non-Shenzhen household registration within Guangdong province(aOR=1.349,95%CI:1.083-1.681),MSM(aOR=1.257,95%CI:1.042-1.520),and individuals infected with CRF07_BC and CRF55_01B(aOR=1.778,95%CI:1.450-2.180,aOR=2.333,95%CI:1.719-3.167)were more likely to be clustered.Additionally,men who have sex with men(MSM,aOR=1.627,95%CI:1.123-2.357)were more likely to be high-risk transmitters.Conclusions The HIV epidemic in Shenzhen was primarily influenced by the mobile population,with young MSM remaining the highest-risk group for HIV infection and transmission,which is key to the prevention and control of the epidemic.The transmission of CRF55

关 键 词:1型艾滋病病毒 分子网络 活跃簇 精准干预 

分 类 号:R512.91[医药卫生—内科学] R373.9[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象