检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宁玉门[1] NING Yu-men(Shangqiu Poiytechnic,Shangqiu 476000,China)
出 处:《舰船科学技术》2021年第8期31-33,共3页Ship Science and Technology
摘 要:针对传统的信号检测优化方法需要大量计算确定参数,检测效率低,不适用于复杂信号的异常检测的问题,研究利用深度学习相关理论优化船舶减振系统突变信号检测方法。对减振系统信号预处理后,设计CNN神经网络结构。利用设计的4层CNN网络对信号检测器优化,完成突变信号检测。仿真实验表明,该优化后的检测方法检测精度整体保持在85%左右,并且具有更高的检测效率和可靠性。To address the problem that the traditional signal detection optimization method requires a large number of calculations to determine the parameters,the detection efficiency is low,and it is not applicable to the anomaly detection of complex signals,the research uses deep learning related theory to optimize the sudden change signal detection method of ship damping system.After pre-processing the signal of the damping system,the CNN neural network structure is designed.The designed 4-layer CNN network is used to optimize the signal detector and complete the detection of abnormal signals.Simulation experiments show that the overall detection accuracy of the optimized detection method is maintained at about85%,and has higher detection efficiency and reliability.
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222