检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙连伟 连雪全 杨佳林 李建伟 SUN Lianwei;LIAN Xuequan;YANG Jialin;LI Jianwei(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China)
机构地区:[1]河北工业大学人工智能与数据科学学院,天津300401
出 处:《医学信息》2025年第8期167-171,共5页Journal of Medical Information
基 金:国家自然科学基金项目(编号:62072154)。
摘 要:药物-靶标预测是现代药物研发中至关重要的一个环节,它克服了传统药物研发中发现和验证药物-靶标对的高成本和周期长等问题。药物-靶标相互作用(DTI)预测和药物-靶标亲和力(DTA)预测都是药物-靶标预测的任务。预测药物-靶标相互作用,筛选出具有潜在相互作用的药物-靶标对,对药物重定位以及新药研发具有重要意义。预测药物-靶标亲和力对药物的设计和优化可起到辅助性作用。图神经网络(GNN)作为一种用于处理图结构数据的深度学习模型,它可有效地对同构网络或异构网络中的节点和边进行表示学习,现已被广泛应用于各种药物-靶标预测任务中。本文对图神经网络在药物-靶标预测领域的研究进展作一综述,以期为图神经网络在药物研发领域的进一步发展提供参考。Drug-target prediction is a crucial part of modern drug research and development.It overcomes the problems of high cost and long cycle in the discovery and verification of drug-target pairs in traditional drug research and development.Drug-target interaction(DTI) prediction and drugtarget affinity(DTA) prediction are both tasks of drug-target prediction.Predicting drug-target interactions and screening drug-target pairs with potential interactions are of great significance for drug repositioning and new drug development.Predicting drug-target affinity can play an auxiliary role in drug design and optimization.As a deep learning model for processing graph-structured data,graph neural network(GNN) can effectively represent nodes and edges in homogeneous or heterogeneous networks,and has been widely used in various drug-target prediction tasks.This paper reviews the research progress of graph neural network in the field of drug-target prediction,in order to provide reference for the further development of graph neural network in the field of drug research and development.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7