Deviation bounds for the norm of a random vector under exponential moment conditions with applications  

在线阅读下载全文

作  者:Vladimir Spokoiny 

机构地区:[1]Weierstrass Institute,HU Berlin,and HSE Moscow,Mohrenstr.39,10117 Berlin,Germany

出  处:《Probability, Uncertainty and Quantitative Risk》2025年第1期135-158,共24页概率、不确定性与定量风险(英文)

基  金:Financial support by the German Research Foundation(DFG)through the Collaborative Research Center 1294"Data assimnilation"is gratefully acknowledged.

摘  要:Hanson-Wright inequality provides a powerful tool for bounding the norm ||ζ|| of a centered stochastic vector ζ with independent entries and sub-gaussian behavior.This paper extends the bounds to the case when ζ only has bounded exponential moments of the form log E exp<V^(-1)ζ,u>≤||u||^(2)/2,where V^(2)≥Var(ζ)and ||u||≤g for some fixed g.For a linear mapping Q,we present an upper quantile function z_(c)(B,x)ensuring P(||Qζ||>z_(c)(B,x))≤3e^(-x) with B=QV^(2)Q^(T).The obtained results exhibit a phase transition effect:with a value Cc depending on g and B,for x≤x_(c),the function z_(c)(B,x)replicates the case of a Gaussian vector ζ,that is,z_(c)^(2)(B,x)=tr(B)+2√xtr(B_(2))+2x||B||.For x>x_(c),the function z_(c)(B,x)grows linearly in.The results are specified to the case of Bernoulli vector sums and to covariance estimation in Frobenius norm.

关 键 词:Upper quantiles Phase transition Vector Bernoulli sums Frobenius loss 

分 类 号:O211[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象