The Local Poincaré Inequality of Stochastic Dynamic and Application to the Ising Model  

在线阅读下载全文

作  者:Kai-yuan CUI Fu-zhou GONG 

机构地区:[1]不详

出  处:《Acta Mathematicae Applicatae Sinica》2025年第2期305-336,共32页应用数学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.12288201).

摘  要:Inspired by the idea of stochastic quantization proposed by Parisi and Wu,we reconstruct the transition probability function that has a central role in the renormalization group using a stochastic differential equation.From a probabilistic perspective,the renormalization procedure can be characterized by a discretetime Markov chain.Therefore,we focus on this stochastic dynamic,and establish the local Poincaré inequality by calculating the Bakry-Émery curvature for two point functions.Finally,we choose an appropriate coupling relationship between parameters K and T to obtain the Poincaré inequality of two point functions for the limiting system.Our method extends the classic Bakry-Émery criterion,and the results provide a new perspective to characterize the renormalization procedure.

关 键 词:Ising model stochastic quantization local Poincaréinequality Bakry-Émery curvature RENORMALIZATION 

分 类 号:O211[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象