检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶曾瑜 Ye Zengyu(South China Normal University Library)
机构地区:[1]华南师范大学图书馆
出 处:《信息与管理研究》2025年第1期78-86,共9页Journal of Information and Management
摘 要:在计算机技术高速发展的时代,数据量的急剧增长以及工作生活节奏的加快,对图书馆馆员的服务质量和效率提出了更高的要求。在“破五唯”背景下,各大高校逐步拓宽教师的业绩评判标准,在科研成果方面,主要包括专利和论文等,而专利和部分中文论文数据存在发明人或作者无法与单位对应的难题。为了更好地解决这个问题,本研究从WOS数据出发,基于Python以及社会网络分析,构建并优化模型,探索数据自动化处理和机构归属判断的方法,提高了学科服务的效率和质量,同时为未来专利及部分中文论文的机构归属研究提供了参考。In the era of rapid development of computer technology,with the increase in data volume and the acceleration of work and life rhythm,higher requirements are placed on the librarians'service quality and efficiency.In the context of“Breaking the Five Only”,major universities have gradually broadened the evaluation criteria for teachers'performance.Academic achievements are mainly evaluated based on patents and papers.There are difficulties in relating inventors or authors to their affiliations in the data of patents and some Chinese papers.To better solve the problem,this study starts with WOS data,builds and optimizes models based on Python and social network analysis,and explores the methods for automated data processing and institutional affiliation identification.It improves the efficiency and quality of subject services and provides a reference for future research on the institutional affiliation of patents and some Chinese papers.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222