检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qing Qin Gang Xiong Lin Han Yujuan Zhang Zhen Shen Changchun Ge
机构地区:[1]Institute of Powder Metallurgy and Advanced Ceramics,School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China [2]State Key Laboratory of Multimodal Artificial Intelligence Systems,Beijing Engineering Research Center of Intelligent Systems and Technology,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China
出 处:《International Journal of Minerals,Metallurgy and Materials》2025年第5期1220-1233,共14页矿物冶金与材料学报(英文版)
基 金:supported in part by the National Natural Science Foundation of China.(Nos.62461160259,92360307 and 92267103).
摘 要:Digital light processing(DLP)is a crucial additive manufacturing(AM)technique for producing high-precision ceramic com-ponents.This study aims to optimize the formulation of Si_(3)N_(4)slurry to enhance both its performance and manufacturability in the DLP process,and investigate key factors such as particle size distribution,photopolymer resin monomer ratios,and dispersant types to im-prove the slurry’s rheological properties.Through these optimizations,a photosensitive Si_(3)N_(4)slurry with 50vol%solid content was de-veloped,exhibiting excellent stability,and low viscosity(2.48 Pa·s at a shear rate of 12.8 s^(-1)).The effects of gas-pressure sintering on the material’s phase composition,microstructure,and mechanical properties were further explored,revealing that this technique significantly increases the flexural strength of the green sample from(109±10.24)to(618±42.15)MPa.The sintered ceramics exhibited high hard-ness((16.59±0.05)GPa)and improved fracture toughness((4.45±0.03)MPa·m^(1/2)).Crack trajectory analysis revealed that crack deflec-tion,crack bridging,and the pull-out of rod-likeβ-Si_(3)N_(4)grains,are the main toughening mechanisms,which could effectively mitigate crack propagation.Among these mechanisms,crack deflection and bridging were particularly influential,significantly enhancing the frac-ture toughness of the Si_(3)N_(4)matrix.Overall,this research highlights how monomer formulation and gas-pressure sintering strengthen the performance of Si_(3)N_(4)slurry in the DLP three-dimensional printing technique.This work is expected to provide new insights for fabricat-ing complex Si_(3)N_(4)ceramic components with superior mechanical properties.
关 键 词:additive manufacturing Si_(3)N_(4)slurry low viscosity pressure sintering
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222