机构地区:[1]广州市城市规划设计有限公司重点项目所 [2]华南理工大学建筑学院、亚热带建筑与城市科学全国重点实验室
出 处:《南方建筑》2025年第4期89-99,共11页South Architecture
基 金:中央高校基本科研业务费专项资金资助(2024ZYGXZR025):“流”视角下城市零售空间分布动态演变机制与优化技术研究;国家自然科学基金资助项目(42271206):移动互联网技术影响下城市零售空间重构特征与机理研究;广州市哲学社会科学发展规划课题(2024GZGJ10):面向数字经济的城市零售空间区位选择特征及调控策略;广州市基础与应用基础研究专题科技菁英“领航”项目(2024A04J4541):移动互联网技术驱动下城市零售空间重构与区划技术研究。
摘 要:近年来,采取“线上预售+线下自提”的社区团购模式快速发展,已发展成为国内新零售的重要组成部分。与传统零售模式相比,社区团购自提点的区位选择、空间组织和服务范围方面呈现明显变化,亟需从“人、货、场”零售业三要素的视角审视其自提点的区位选择特征。以广州市主城区为例,综合使用兴盛优选团购自提点、建成环境、人群画像和商铺租金数据,并运用核密度分析、机器学习等研究方法,阐释社区团购自提点的区位选择特征及影响因素,进而提出优化策略。经研究发现:(1)社区团购自提点以社区商业设施为依托载体,呈现多中心的空间分布特征;(2)社区团购自提点虽对传统零售空间的分布存在路径依赖,但也在传统零售业欠发达、居民收入水平较低的地区附近形成集聚热点;(3)零售设施密度是影响社区团购自提点区位选择的首要因素,其次是人口密度、路网密度以及特定的居民社会经济属性。从自提点空间分布和依托空间选择两个方面对社区团购自提点的区位选择提出优化建议,能为社区团购自提点的优化布局提供参考。In recent years,the community group-buying mode characteristic of"online pre-sale+offline self-pickup"has developed rapidly and become an important component of retail in China.In comparison to the traditional retail mode,there have been conspicuous changes in the location selection,spatial organisation and service scope of self-pickup points for community group buying.Therefore,it is crucial to investigate the location choice characteristics of self-pickup points from the perspective of three fundamental elements in the retail industry:customers,goods,and scenes.A case study based on the main urban area of Guangzhou was carried out herein,which explored the location selection characteristics of self-pickup points for community group buying from the perspective of customers,goods,and scenes,and revealed their differences from traditional retail.The results provide support for the optimisation of self-pickup point layout,and facilitate the reconstruction of urban retail spaces driven by digital technology.Based on multi-source data,including the self-pickup points of Xingsheng Preferred,the built environment,population portrait,and store rent,this study identifies location selection characteristics of self-pickup points from the perspectives of spatial distribution patterns,the type of attached spaces,and the features of service objects using kernel density analysis and term-frequency analysis.Furthermore,an Extreme Gradient Boosting(XGBoost)model was built to pinpoint the influencing factors of the decision-making tree model on the location selection of community group-buying self-pickup points and their nonlinear relationships.Furthermore,on-site investigations and semi-structured interviews on 20 typical cases were carried out to determine the influencing mechanism of location selection of community group-buying self-pickup points.The results demonstrated the following:(1)The self-pickup points for community group buying were mostly attached to community commercial facilities,presenting multi-centre spatial dis
分 类 号:TU984.12[建筑科学—城市规划与设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...