Multispectral non-line-of-sight imaging via deep fusion photography  

在线阅读下载全文

作  者:Hao LIU Zhen XU Yifan WEI Kai HAN Xin PENG 

机构地区:[1]College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China [2]School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China

出  处:《Science China(Information Sciences)》2025年第4期193-211,共19页中国科学(信息科学)(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.62272421,62375283);Science Fund Program for Outstanding Young Scholars of Hunan Province(Grant No.2024JJ4044)。

摘  要:Passive non-line-of-sight(NLOS)imaging is a promising technique that extends visual perception to hidden objects around the corner,offering advantages such as low-cost,portability,and real-time.However,the low quality of current passive NLOS images remains a significant barrier to field application of NLOS targets imaging at long standoffs.This study introduces a multispectral NLOS imaging approach utilizing a deep fusion framework to reconstruct images from visible,short-wavelength infrared,and long-wavelength infrared raw data captured by portable devices.The nonlinear representation capabilities and learnable activation function of the Kolmogorov-Arnold network(KAN)are particularly suited to the inverse light field transmission model in NLOS imaging,enhancing the interpretability of the deep neural network.Experimental results demonstrate that this deep fusion photography method provides satisfied performance to image the occluded individuals despite the polynomial attenuation of effective signals with increasing distance between hidden objects and the relay wall.Notably,the passive NLOS experiments reveal successful imaging of hidden people at distance>5 m from the relay wall.Remarkably,even at distances three times greater than those in previous studies,quantitative metrics validate the superior performance of the proposed method in the task of passive NLOS imaging.

关 键 词:non-line-of-sight imaging multispectral deep fusion Kolmogorov-Arnold network VIS-SWIR-LWIR multispectral imaging learning-based imaging method 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象