Self-calibrated region-level regression for crowd counting  

在线阅读下载全文

作  者:Jiawen ZHU Wenda ZHAO You HE Huchuan LU 

机构地区:[1]School of Information and Communication Engineering,Dalian University of Technology,Dalian 116024,China [2]Department of Electronic Engineering,Tsinghua University,Beijing 100084,China

出  处:《Science China(Information Sciences)》2025年第4期383-384,共2页中国科学(信息科学)(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.62176038,U1903215)。

摘  要:Accurate crowd counting in natural images has become increasingly attractive owing to its numerous real-world applications,e.g.,crowd analysis and video surveillance.Despite significant progress in crowd counting[1,2],challenges(such as scale variation and background clutter)remain.To fully utilize spatial information,existing crowd counting approaches[3,4]mainly estimate a density map,where point annotations are smoothed via a Gaussian kernel to generate probabilities indicating the presence of a crowd.

关 键 词:crowd counting natural images point annotations smoothed estimate density mapwhere video surveillancedespite self calibrated gaussian kernel crowd counting challenges such 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象