检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ricardo Rodriguez-Torrealba Eva Garcia-Lopez Antonio Garcia-Cabot
出 处:《Computers, Materials & Continua》2025年第5期1683-1705,共23页计算机、材料和连续体(英文)
基 金:supported by the Universidad de Alcalá(UAH)under Grant PIUAH21/IA-010;Comunidad Autonóma de Madrid under Grant CM/JIN/2021-034.
摘 要:Generation of good-quality distractors is a key and time-consuming task associated withmultiple-choice questions(MCQs),one of the assessment items that have dominated the educational field for years.Recent advances in language models and architectures present an opportunity for helping teachers to generate and update these elements to the required speed and scale of widespread increase in online education.This study focuses on a text-to-text approach for joints generation of distractors for MCQs,where the context,question and correct answer are used as input,while the set of distractors corresponds to the output,allowing the generation of three distractors in a singlemodel inference.By fine-tuning FlanT5 models and LongT5 with TGlobal attention using a RACE-based dataset,the potential of this approach is explored,demonstrating an improvement in the BLEU and ROUGE-L metrics when compared to previous works and a GPT-3.5 baseline.Additionally,BERTScore is introduced in the evaluation,showing that the fine-tuned models generate distractors semantically close to the reference,but the GPT-3.5 baseline still outperforms in this area.A tendency toward duplicating distractors is noted,although models fine-tuned with Low-Rank Adaptation(LoRA)and 4-bit quantization showcased a significant reduction in duplicated distractors.
关 键 词:Text-to-text distractor generation fine-tuning FlanT5 LongT5 multiple-choice QUESTIONNAIRE
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49