Joint Generation of Distractors for Multiple-Choice Questions:A Text-to-Text Approach  

在线阅读下载全文

作  者:Ricardo Rodriguez-Torrealba Eva Garcia-Lopez Antonio Garcia-Cabot 

机构地区:[1]Departamento de Ciencias de la Computación,Universidad de Alcalá,Alcaláde Henares,Madrid,28801,Spain

出  处:《Computers, Materials & Continua》2025年第5期1683-1705,共23页计算机、材料和连续体(英文)

基  金:supported by the Universidad de Alcalá(UAH)under Grant PIUAH21/IA-010;Comunidad Autonóma de Madrid under Grant CM/JIN/2021-034.

摘  要:Generation of good-quality distractors is a key and time-consuming task associated withmultiple-choice questions(MCQs),one of the assessment items that have dominated the educational field for years.Recent advances in language models and architectures present an opportunity for helping teachers to generate and update these elements to the required speed and scale of widespread increase in online education.This study focuses on a text-to-text approach for joints generation of distractors for MCQs,where the context,question and correct answer are used as input,while the set of distractors corresponds to the output,allowing the generation of three distractors in a singlemodel inference.By fine-tuning FlanT5 models and LongT5 with TGlobal attention using a RACE-based dataset,the potential of this approach is explored,demonstrating an improvement in the BLEU and ROUGE-L metrics when compared to previous works and a GPT-3.5 baseline.Additionally,BERTScore is introduced in the evaluation,showing that the fine-tuned models generate distractors semantically close to the reference,but the GPT-3.5 baseline still outperforms in this area.A tendency toward duplicating distractors is noted,although models fine-tuned with Low-Rank Adaptation(LoRA)and 4-bit quantization showcased a significant reduction in duplicated distractors.

关 键 词:Text-to-text distractor generation fine-tuning FlanT5 LongT5 multiple-choice QUESTIONNAIRE 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象