A Lightweight Convolutional Neural Network with Squeeze and Excitation Module for Security Authentication Using Wireless Channel  

在线阅读下载全文

作  者:Xiaoying Qiu Xiaoyu Ma Guangxu Zhao Jinwei Yu Wenbao Jiang Zhaozhong Guo Maozhi Xu 

机构地区:[1]College of Computer Science,Beijing Information Science and Technology University,Beijing,100192,China [2]School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing,100876,China [3]School of Mathematical Sciences,Peking University,Beijing,100871,China

出  处:《Computers, Materials & Continua》2025年第5期2025-2040,共16页计算机、材料和连续体(英文)

基  金:supported in part by the National Key R&D Program of China under grant no.2022YFB2703000;in part by the Young Backbone Teachers Support Plan of BISTU under grant no.YBT202437;in part by the R&D Program of Beijing Municipal Education Commission under grant no.KM202211232012;in part by the Educational Innovation Program of BISTU under grant no.2025JGYB19。

摘  要:Physical layer authentication(PLA)in the context of the Internet of Things(IoT)has gained significant attention.Compared with traditional encryption and blockchain technologies,PLA provides a more computationally efficient alternative to exploiting the properties of the wireless medium itself.Some existing PLA solutions rely on static mechanisms,which are insufficient to address the authentication challenges in fifth generation(5G)and beyond wireless networks.Additionally,with the massive increase in mobile device access,the communication security of the IoT is vulnerable to spoofing attacks.To overcome the above challenges,this paper proposes a lightweight deep convolutional neural network(CNN)equipped with squeeze and excitation module(SE module)in dynamic wireless environments,namely SE-ConvNet.To be more specific,a convolution factorization is developed to reduce the complexity of PLA models based on deep learning.Moreover,an SE module is designed in the deep CNN to enhance useful features andmaximize authentication accuracy.Compared with the existing solutions,the proposed SE-ConvNet enabled PLA scheme performs excellently in mobile and time-varying wireless environments while maintaining lower computational complexity.

关 键 词:Physical layer authentication blockchain squeeze and excitation module computational cost mobile scenario 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象