Multimodal Neural Machine Translation Based on Knowledge Distillation and Anti-Noise Interaction  

在线阅读下载全文

作  者:Erlin Tian Zengchao Zhu Fangmei Liu Zuhe Li 

机构地区:[1]School of Software,Zhengzhou University of Light Industry,Zhengzhou,450001,China [2]School of Computer Science and Technology,Zhengzhou University of Light Industry,Zhengzhou,450001,China

出  处:《Computers, Materials & Continua》2025年第5期2305-2322,共18页计算机、材料和连续体(英文)

基  金:supported by the Henan Provincial Science and Technology Research Project:232102211017,232102211006,232102210044,242102211020 and 242102211007;the ZhengzhouUniversity of Light Industry Science and Technology Innovation Team Program Project:23XNKJTD0205.

摘  要:Within the realm of multimodal neural machine translation(MNMT),addressing the challenge of seamlessly integrating textual data with corresponding image data to enhance translation accuracy has become a pressing issue.We saw that discrepancies between textual content and associated images can lead to visual noise,potentially diverting the model’s focus away from the textual data and so affecting the translation’s comprehensive effectiveness.To solve this visual noise problem,we propose an innovative KDNR-MNMT model.Themodel combines the knowledge distillation technique with an anti-noise interaction mechanism,which makes full use of the synthesized graphic knowledge and local image interaction masks,aiming to extract more effective visual features.Meanwhile,the KDNR-MNMT model adopts a multimodal adaptive gating fusion strategy to enhance the constructive interaction of different modal information.By integrating a perceptual attention mechanism,which uses cross-modal interaction cues within the Transformer framework,our approach notably enhances the quality of machine translation outputs.To confirmthemodel’s performance,we carried out extensive testing and assessment on the extensively utilized Multi30K dataset.The outcomes of our experiments prove substantial enhancements in our model’s BLEU and METEOR scores,with respective increases of 0.78 and 0.99 points over prevailing methods.This accomplishment affirms the potency of our strategy for mitigating visual interference and heralds groundbreaking advancements within themultimodal NMT domain,further propelling the evolution of this scholarly pursuit.

关 键 词:Knowledge distillation anti-noise interaction mask occlusion door control fusion 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象