检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qingqing Song Shaoliang Xia Zhen Wu
机构地区:[1]Faculty of Applied Mathematics and Computer Science,Belarusian State University,Minsk,220030,Belarus [2]Higher School of Management and Business,Belarus State Economic University,Minsk,220070,Belarus
出 处:《Computers, Materials & Continua》2025年第5期2619-2642,共24页计算机、材料和连续体(英文)
摘 要:Load time series analysis is critical for resource management and optimization decisions,especially automated analysis techniques.Existing research has insufficiently interpreted the overall characteristics of samples,leading to significant differences in load level detection conclusions for samples with different characteristics(trend,seasonality,cyclicality).Achieving automated,feature-adaptive,and quantifiable analysis methods remains a challenge.This paper proposes a Threshold Recognition-based Load Level Detection Algorithm(TRLLD),which effectively identifies different load level regions in samples of arbitrary size and distribution type based on sample characteristics.By utilizing distribution density uniformity,the algorithm classifies data points and ultimately obtains normalized load values.In the feature recognition step,the algorithm employs the Density Uniformity Index Based on Differences(DUID),High Load Level Concentration(HLLC),and Low Load Level Concentration(LLLC)to assess sample characteristics,which are independent of specific load values,providing a standardized perspective on features,ensuring high efficiency and strong interpretability.Compared to traditional methods,the proposed approach demonstrates better adaptive and real-time analysis capabilities.Experimental results indicate that it can effectively identify high load and low load regions in 16 groups of time series samples with different load characteristics,yielding highly interpretable results.The correlation between the DUID and sample density distribution uniformity reaches 98.08%.When introducing 10% MAD intensity noise,the maximum relative error is 4.72%,showcasing high robustness.Notably,it exhibits significant advantages in general and low sample scenarios.
关 键 词:Load time series load level detection threshold recognition density uniformity index outlier detection management systems engineering
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49