Robust Detection for Fisheye Camera Based on Contrastive Learning  

在线阅读下载全文

作  者:Junzhe Zhang Lei Tang Xin Zhou 

机构地区:[1]School of Information Engineering,Chang’an University,Xi’an,710064,China [2]College of Automation,Northwestern Polytechnical University,Xi’an,710129,China

出  处:《Computers, Materials & Continua》2025年第5期2643-2658,共16页计算机、材料和连续体(英文)

摘  要:Fisheye cameras offer a significantly larger field of view compared to conventional cameras,making them valuable tools in the field of computer vision.However,their unique optical characteristics often lead to image distortions,which pose challenges for object detection tasks.To address this issue,we propose Yolo-CaSKA(Yolo with Contrastive Learning and Selective Kernel Attention),a novel training method that enhances object detection on fisheye camera images.The standard image and the corresponding distorted fisheye image pairs are used as positive samples,and the rest of the image pairs are used as negative samples,which are guided by contrastive learning to help the distorted images find the feature vectors of the corresponding normal images,to improve the detection accuracy.Additionally,we incorporate the Selective Kernel(SK)attention module to focus on regions prone to false detections,such as image edges and blind spots.Finally,the mAP_(50) on the augmented KITTI dataset is improved by 5.5% over the original Yolov8,while the mAP_(50) on the WoodScape dataset is improved by 2.6% compared to OmniDet.The results demonstrate the performance of our proposed model for object detection on fisheye images.

关 键 词:FISHEYE contrastive learning Yolov8 ATTENTION 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象