An Attention-Based CNN Framework for Alzheimer’s Disease Staging with Multi-Technique XAI Visualization  

在线阅读下载全文

作  者:Mustafa Lateef Fadhil Jumaili Emrullah Sonuç 

机构地区:[1]Department of Computer Engineering,Karabuk University,Karabük,78050,Türkiye [2]Department of Computer Science,College of Computer Science and Mathematics,Tikrit University,Tikrit,34001,Iraq

出  处:《Computers, Materials & Continua》2025年第5期2947-2969,共23页计算机、材料和连续体(英文)

摘  要:Alzheimer’s disease(AD)is a significant challenge in modern healthcare,with early detection and accurate staging remaining critical priorities for effective intervention.While Deep Learning(DL)approaches have shown promise in AD diagnosis,existing methods often struggle with the issues of precision,interpretability,and class imbalance.This study presents a novel framework that integrates DL with several eXplainable Artificial Intelligence(XAI)techniques,in particular attention mechanisms,Gradient-Weighted Class Activation Mapping(Grad-CAM),and Local Interpretable Model-Agnostic Explanations(LIME),to improve bothmodel interpretability and feature selection.The study evaluates four different DL architectures(ResMLP,VGG16,Xception,and Convolutional Neural Network(CNN)with attention mechanism)on a balanced dataset of 3714 MRI brain scans from patients aged 70 and older.The proposed CNN with attention model achieved superior performance,demonstrating 99.18%accuracy on the primary dataset and 96.64% accuracy on the ADNI dataset,significantly advancing the state-of-the-art in AD classification.The ability of the framework to provide comprehensive,interpretable results through multiple visualization techniques while maintaining high classification accuracy represents a significant advancement in the computational diagnosis of AD,potentially enabling more accurate and earlier intervention in clinical settings.

关 键 词:Alzheimer’s disease deep learning early disease detection XAI medical image classification 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象