检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Amjad A.Alsuwaylimi Zaid S.Alenezi
机构地区:[1]Department of Computer Science,College of Science,Northern Border University,Arar,91431,Saudi Arabia [2]Information Technology Management,Northern Border University,Arar,91431,Saudi Arabia
出 处:《Computers, Materials & Continua》2025年第5期3165-3185,共21页计算机、材料和连续体(英文)
基 金:funded by the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia,through the project number“NBU-FFR-2025-1197-01”.
摘 要:Cyberbullying is a remarkable issue in the Arabic-speaking world,affecting children,organizations,and businesses.Various efforts have been made to combat this problem through proposed models using machine learning(ML)and deep learning(DL)approaches utilizing natural language processing(NLP)methods and by proposing relevant datasets.However,most of these endeavors focused predominantly on the English language,leaving a substantial gap in addressing Arabic cyberbullying.Given the complexities of the Arabic language,transfer learning techniques and transformers present a promising approach to enhance the detection and classification of abusive content by leveraging large and pretrained models that use a large dataset.Therefore,this study proposes a hybrid model using transformers trained on extensive Arabic datasets.It then fine-tunes the hybrid model on a newly curated Arabic cyberbullying dataset collected from social media platforms,in particular Twitter.Additionally,the following two hybrid transformer models are introduced:the first combines CAmelid Morphologically-aware pretrained Bidirectional Encoder Representations from Transformers(CAMeLBERT)with Arabic Generative Pre-trained Transformer 2(AraGPT2)and the second combines Arabic BERT(AraBERT)with Cross-lingual Language Model-RoBERTa(XLM-R).Two strategies,namely,feature fusion and ensemble voting,are employed to improve the model performance accuracy.Experimental results,measured through precision,recall,F1-score,accuracy,and AreaUnder the Curve-Receiver Operating Characteristic(AUC-ROC),demonstrate that the combined CAMeLBERT and AraGPT2 models using feature fusion outperformed traditional DL models,such as Long Short-Term Memory(LSTM)and Bidirectional Long Short-Term Memory(BiLSTM),as well as other independent Arabic-based transformer models.
关 键 词:CYBERBULLYING TRANSFORMERS pre-trained models arabic cyberbullying detection deep learning
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49