检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jian Ge Qin Qin Jinhua Jiang Zhiwei Shen Zimei Tu Yahui Zhang
机构地区:[1]School of Intelligent Manufacturing and Control Engineering,Shanghai Polytechnic University,Shanghai,201209,China [2]School of Electrical Engineering and Telecommunications,UNSW,Sydney,NSW 2052,Australia
出 处:《Computers, Materials & Continua》2025年第5期3211-3226,共16页计算机、材料和连续体(英文)
摘 要:Manufacturers must identify and classify various defects in automotive sealing rings to ensure product quality.Deep learning algorithms show promise in this field,but challenges remain,especially in detecting small-scale defects under harsh industrial conditions with multimodal data.This paper proposes an enhanced version of You Only Look Once(YOLO)v8 for improved defect detection in automotive sealing rings.We introduce the Multi-scale Adaptive Feature Extraction(MAFE)module,which integrates Deformable ConvolutionalNetwork(DCN)and Spaceto-Depth(SPD)operations.This module effectively captures long-range dependencies,enhances spatial aggregation,and minimizes information loss of small objects during feature extraction.Furthermore,we introduce the Blur-Aware Wasserstein Distance(BAWD)loss function,which improves regression accuracy and detection capabilities for small object anchor boxes,particularly in scenarios involving defocus blur.Additionally,we have constructed a high-quality dataset of automotive sealing ring defects,providing a valuable resource for evaluating defect detection methods.Experimental results demonstrate our method’s high performance,achieving 98.30% precision,96.62% recall,and an inference speed of 20.3 ms.
关 键 词:Deep learning automotive sealing ring defect detection
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49