检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶炳德 马金毅 孙玉丽 Tao Bingde;Ma Jinyi;Sun Yuli(Qinghai Province Geospatial and Natural Resources Big Data Center,Key Laboratory of Geospatial Information Technology and Application in Qinghai Province,Xining 810000,China)
机构地区:[1]青海省地理空间和自然资源大数据中心青海省地理空间信息技术与应用重点实验室,青海西宁810000
出 处:《环境科学与管理》2025年第4期157-161,共5页Environmental Science and Management
摘 要:为了获取自然灾害生态环境综合风险预警方法,提出一种基于区域划分的自然灾害生态环境综合风险预警方法。通过细粒度方法展开自然灾害生态环境区域划分,明确自然灾害多发区域。利用字符级文本与多尺度循环神经网络分析巡视记录,评估生态环境风险等级。针对目标区域实施网格化分割,统计网格内风险度,组建图网络,并应用MIC-ChebNet预测各个网格的生态环境风险度。根据MRCNN模型的分类结果和MIC-ChebNet的预测结果展开生态环境综合风险预警。实验结果表明,所提方法可以准确展开自然灾害生态环境综合风险预警。This study proposed a comprehensive risk warning method for natural disaster ecological environment.It expands the division of natural disaster ecological environment regions through fine-grained methods,and clarifies the areas prone to natural disasters.Character level text and multi-scale recurrent neural networks are used to analyze inspection records and assess ecological environment risk levels.By implementing grid segmentation for the target area,the study calculates the risk level within the grid,constructs a graph network,and applies MIC ChebNet to predict the ecological environment risk level of each grid.Based on the classification results of MRCNN model and the prediction results of MIC ChebNet,it carries out comprehensive ecological environment risk warning.The experimental results show that the proposed method can accurately carry out comprehensive risk warning of natural disasters and ecological environment.
分 类 号:X32[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38