检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李禹彤 刘坤[1] 杜峰 王新玉 贾鸿莉 LI Yutong;LIU Kun;DU Feng;WANG Xinyu;JIA Hongli(College of Information and Electrical Engineering,Heilongjiang Bayi Agricultural University,Daqing,Heilongjiang 163319)
机构地区:[1]黑龙江八一农垦大学信息与电气工程学院,黑龙江大庆163319
出 处:《热带农业工程》2025年第2期32-37,共6页Tropical Agricultural Engineering
摘 要:叶片含水率无损检测对发展智慧农业具有重要意义。本文综述了植物叶片含水率检测技术现状和基于图像处理的叶片含水率无损检测方法,分析图像处理技术识别植物叶片含水率的原理、处理技术,梳理概括基于图像处理检测植物叶片含水率数学模型研究的现状。结果表明,基于图像处理的计算机视觉检测技术对植物叶片的颜色、形状、纹理等外部特征开展含水率检测有较大优势。Non-destructive testing of leaf moisture content is of great significance for the development of smart agriculture.This paper reviews the current status of plant leaf moisture content detection technology and non-destructive testing methods based on image processing,analyzes the principle and processing technology of image processing technology in identifying plant leaf moisture content,and summarizes the current status of research on mathematical models for testing plant leaf moisture content based on image processing.The results show that computer vision testing technology based on image processing has the advantages in detecting the moisture content of plant leaves by analyzing their color,shape,texture,and other external features.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7