基于深度学习的人体持有武器识别研究  

Research on Weapon Recognition of Human Body Based on Deep Learning

在线阅读下载全文

作  者:黄兆年 卢龙生 程朋 李恒[1] HUANG Zhaonian;LU Longsheng;CHENG Peng;LI Heng(Wuhan Digital Engineering Institute,Wuhan 430205;Guangzhou Changdao Optoelectronic Machinery Factory,Guangzhou 510336)

机构地区:[1]武汉数字工程研究所,武汉430205 [2]广州市长岛光电机械厂,广州510336

出  处:《舰船电子工程》2025年第3期38-42,共5页Ship Electronic Engineering

摘  要:论文提出一种基于改进的时空卷积神经网络加上YOLOv5识别人员是否携带武器的方法,此方法首先从边境的监控录像中提取单帧为单元提取人体骨架点信息,然后以时空图卷积神经网络为框架聚合多帧图像信息,判别人员动作。再通过YOLOv5和人体骨架检测人员和武器之间的关系,判断运动的人员是否携带武器。最后通过实验验证方法的有效性,结果表明该方法可以充分利用多帧图像中的骨架点之间的时空信息,来准确识别人员运动情况,以及是否携带武器,具有很好的准确率和鲁棒性。This paper proposes a method based on the improved ST-GCN and YOLOv5 to identify whether a person is carrying a weapon.In this method,a single frame is extracted from the border surveillance video as a unit to extract the skeleton point infor-mation of the human body,and then multi-frame image information is aggregated by using the ST-GCN as a framework to identify the movement of the person.Then,the relationship between personnel and weapons can be detected by YOLOv5 and human skele-ton to determine whether personnel in motion carry weapons.Finally,experiments are conducted to verify the effectiveness of the method.The results show that the method can make full use of the spatio-temporal information between the skeleton points in multi-frame images to accurately identify the movement of people and whether they carry weapons,with good accuracy and robustness。

关 键 词:动作识别 武器识别 骨架信息提取 时空图卷积神经网络 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象