检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yi Xiong Haojie Liu Bingxing Chen Yanjie Chen Ligang Yao Zongxing Lu
机构地区:[1]School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou,350108,China [2]Lenovo(Shanghai)Information Technology Co.,Ltd.No,696 Songtao Road,Pudong District,Shanghai,201203,China
出 处:《Journal of Bionic Engineering》2025年第2期626-641,共16页仿生工程学报(英文版)
基 金:supported in part by the National Natural Science Foundationof China under Grant(61801122);Natural Science Foundation of FujianProvince(2022J01542).
摘 要:The wheeled bipedal robots have great application potential in environments with a mixture of structured and unstructured terrain. However, wheeled bipedal robots have problems such as poor balance ability and low movement level on rough roads. In this paper, a novel and low-cost wheeled bipedal robot with an asymmetrical five-link mechanism is proposed, and the kinematics of the legs and the dynamics of the Wheeled Inverted Pendulum (WIP) are modeled. The primary balance controller of the wheeled bipedal robot is built based on the Linear Quadratic Regulator (LQR) and the compensation method of the virtual pitch angle adjusting the Center of Mass (CoM) position, then the whole-body hybrid torque-position control is established by combining attitude and leg controllers. The stability of the robot’s attitude control and motion is verified with simulations and prototype experiments, which confirm the robot’s ability to pass through complex terrain and resist external interference. The feasibility and reliability of the proposed control model are verified.
关 键 词:Wheeled Robots Legged Robots Motion Control Mechanism Design
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49