检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴锦辉 姜远[1,2] Wu Jinhui;Jiang Yuan(National Key Laboratory for Novel Software Technology(Nanjing University),Nanjing 210023;School of Artificial Intelligence,Nanjing University,Nanjing 210023)
机构地区:[1]计算机软件新技术全国重点实验室(南京大学),南京210023 [2]南京大学人工智能学院,南京210023
出 处:《计算机研究与发展》2025年第5期1205-1215,共11页Journal of Computer Research and Development
基 金:国家自然科学基金项目(62176117);南京大学优秀博士研究生创新能力提升计划项目(202401A13)。
摘 要:四元数神经网络将实值神经网络推广到了四元数代数中,其在偏振合成孔径雷达奇异点补偿、口语理解、机器人控制等任务中取得了比实值神经网络更高的精度或更快的收敛速度.四元数神经网络的性能在实验中已得到广泛验证,但四元数神经网络的理论性质及其相较于实值神经网络的优势研究较少.从表示能力的角度出发,研究四元数神经网络的理论性质及其相较于实值神经网络的优势.首先,证明了四元数神经网络使用一个非分开激活的修正线性单元(rectified linear unit,ReLU)型激活函数时的通用近似定理.其次,研究了四元数神经网络相较于实值神经网络的逼近优势.针对分开激活的ReLU型激活函数,证明了单隐层实值神经网络需要约4倍参数量才能生成与单隐层四元数神经网络相同的最大凸线性区域数.针对非分开激活的ReLU型激活函数,证明了单隐层四元数神经网络与单隐层实值神经网络间的逼近分离:四元数神经网络可用相同的隐层神经元数量与权重模长表示实值神经网络,而实值神经网络需要指数多个隐层神经元或指数大的参数才可能近似四元数神经网络.最后,模拟实验验证了理论.Quaternion-valued neural networks extend real-valued neural networks to the algebra of quaternions.Quaternion-valued neural networks achieve higher accuracy or faster convergence than real-valued neural networks in some tasks,such as singular point compensation in polarimetric synthetic aperture,spoken language understanding,and radar robot control.The performance of quaternion-valued neural networks is widely supported by empirical studies,but there are few studies about theoretical properties of quaternion-valued neural networks,especially why quaternion-valued neural networks can be more efficient than real-valued neural networks.In this paper,we investigate theoretical properties of quaternion-valued neural networks and the advantages of quaternion-valued neural networks compared with real-valued neural networks from the perspective of approximation.Firstly,we prove the universal approximation of quaternion-valued neural networks with a non-split ReLU(rectified linear unit)-type activation function.Secondly,we demonstrate the approximation advantages of quaternion-valued neural networks compared with real-valued neural networks.For split ReLU-type activation functions,we show that one-hidden-layer real-valued neural networks need about 4 times the number of parameters to possess the same maximum number of convex linear regions as one-hidden-layer quaternion-valued neural networks.For the non-split ReLU-type activation function,we prove the approximation separation between one-hidden-layer quaternion-valued neural networks and one-hidden-layer real-valued neural networks,i.e.,a quaternion-valued neural network can express a real-valued neural network using the same number of hidden neurons and the same parameter norm,while a real-valued neural network cannot approximate a quaternion-valued neural network unless the number of hidden neurons is exponentially large or the parameters are exponentially large.Finally,simulation experiments support our theoretical findings.
关 键 词:四元数神经网络 通用近似 逼近优势 最大凸线性区域数 逼近分离 神经网络理论
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38