检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴文静 但波 王中训[1,2] WU Wenjing;DAN Bo;WANG Zhongxun(School of Physics and Electronic Information,Yantai University,Yantai 264005,China;Shandong Data Open Innovation Application Laboratory of Smart Grid Advanced Technology,Yantai University,Yantai 264005,China;Naval Aviation University,Yantai 264001,China)
机构地区:[1]烟台大学物理与电子信息学院,山东烟台264005 [2]烟台大学智慧电网先进技术山东省数据开放创新应用实验室,山东烟台264005 [3]海军航空大学,山东烟台264001
出 处:《雷达科学与技术》2025年第2期192-198,205,共8页Radar Science and Technology
基 金:国家自然科学基金重点项目(No.62293544)。
摘 要:高分辨一维距离像(High Resolution Range Profile,HRRP)常应用于雷达自动目标识别领域,HRRP数据结构复杂,从中提取稳定可靠的特征是HRRP目标识别的关键,本文提出一种融合网络模型,用于舰船HRRP的目标识别。模型首先通过BERT(Bidirectional Encoder Representations from Transformers)进行初步特征提取,再通过并行网络提取深度特征,左侧分支使用多尺度卷积神经网络(Multi‐scale Convolutional Neural Network,MCNN)模块提取不同尺度的局部特征信息,并通过SE(Squeeze‐and‐Excitation)对卷积结果进行优化,更好地关注数据中的关键信息,右侧分支使用双向门控循环网络(Bidirectional Gated Recurrent Unit,BiGRU)捕捉序列中的长期依赖关系,结合多头注意力模块可以更好地捕捉不同位置间的相关性,最后对结果进行拼接,最大程度地利用不同网络的优势,提升模型的分类性能。实验结果表明,模型能够有效学习HRRP序列中的特征,有较好的识别性能。High resolution range profile(HRRP)is commonly used in the field of radar automatic target recognition.The data structure of HRRP is complex,and extracting stable and reliable features from it is crucial for HRRP target recognition.This paper proposes a fusion network model for the target recognition of ship HRRP.The model first performs preliminary feature extraction through bidirectional encoder representations from transformers(BERT),followed by deep feature extraction through a parallel network.The left branch uses a multi-scale convolutional neural network(MCNN)module to extract local feature information at different scales.The convolution results are optimized by squeezeand-excitation(SE)to better focus on key information in the data.The right branch employs a bidirectional gated recurrent unit(BiGRU)to capture long-term dependencies in the sequence.Combined with a multi-head attention module,the correlations between different positions can be better captured.Finally,the results are concatenated to maximize the advantages of different networks and improve the model’s classification performance.The experimental results show that the model can effectively learn the features from the HRRP sequences and has good recognition performance.
关 键 词:高分辨距离像 BERT模块 MCNN网络 BiGRU网络
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49