检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任少杰 董定乾 陈力发 颜招强 陈鑫辉 丁浩然 REN Shao-jie;DONG Ding-qian;CHEN Li-fa;YAN Zhao-qiang;CHEN Xin-hui;DING Hao-ran(College of Mechanical Engineering,Sichuan University of Science and Engineering,Zigong 643000,China;Zigong Zhaoqiang Sealing Products Industrial Co.,Ltd.,Zigong 643011,China;State Key Laboratory of Powder Metallurgy,Central South University,Changsha 410083,China)
机构地区:[1]四川轻化工大学机械工程学院,四川自贡643000 [2]自贡兆强密封实业制品有限责任公司,四川自贡643011 [3]中南大学粉末冶金国家重点实验室,湖南长沙410083
出 处:《稀有金属与硬质合金》2025年第2期94-99,108,共7页Rare Metals and Cemented Carbides
基 金:国家自然科学基金项目(52374371,52074365);四川轻化工大学人才基金项目(2021RC18)。
摘 要:Ti(C,N)基金属陶瓷因其资源丰富、成本低廉及物理化学性能优异,成为替代传统WC基金属陶瓷的理想材料,但其断裂强度和韧性不足,限制了高速切削应用。本文综述了碳热还原氮化法制备Ti(C,N)固溶体粉末的反应机理及关键工艺参数的影响,分析了当前Ti(C,N)粉末制备方法的不足,并对未来研究方向进行了展望。碳热还原氮化法制备Ti(C,N)粉末的反应过程分为三个阶段:TiO_(2)与C发生固-固反应生成Ti_(3)O_(5)中间相;Ti_(3)O_(5)中间相与N_(2)和CO发生气-固反应生成Ti(C_(x),N_(y),O_(z));Ti(C_(x),N_(y),O_(z))中的C、N、O原子发生置换反应获得Ti(C,N)粉末。提高反应温度、延长反应时间有利于提高Ti(C,N)粉末的C含量但会增大其晶粒,而小粒径碳源和优化的氮气流速可提升Ti(C,N)粉末纯度与性能。尽管碳热还原氮化法制备Ti(C,N)因成本低、易工业化被视为主流技术,但仍面临产品纯度不高、晶粒粗大等挑战。未来研究需聚焦于开发高效经济的制备工艺、精确调控Ti(C,N)固溶体粉末粒度及减少团聚,以便推动Ti(C,N)基金属陶瓷的工业应用。Ti(C,N)-based cermets have been considered as ideal materials to replace traditional WC-based cermets due to their abundant resources,low cost and excellent physical and chemical properties.However,their low fracture strength and toughness limit their application in high-speed cutting.This paper reviews the reaction mechanism and the influence of key process parameters of the carbon thermal reduction nitridation method for preparing Ti(C,N)solid solution powder,analyzes the shortcomings of the current Ti(C,N)powder preparation methods,and prospects the future research directions.The reaction process of preparing Ti(C,N)powder by carbothermal reduction nitridation method is divided into three stages:TiO_(2) undergoes solid-solid reaction with C atoms to generate Ti_(3)O_(5) intermediate phase,Ti_(3)O_(5) intermediate phase undergoes gas-solid reaction with N_(2) and CO to generate Ti(C_(x),N_(y),O_(z)),and the C,N and O atoms in Ti(C_(x),N_(y),O_(z))undergo displacement reaction to obtain Ti(C,N)powder.Increasing the reaction temperature and prolonging the reaction time are beneficial for increasing the C content of Ti(C,N)powder,but increase its grain size,while carbon source with a small particle size and optimized nitrogen flow rate can improve the purity and performance of Ti(C,N)powder.Although the carbothermal reduction nitridation method is considered as the dominant technology for preparing Ti(C,N)due to its low cost and easy industrialization,it still faces challenges such as low product purity and coarse grain size.Future research needs to focus on developing efficient and economical preparation processes,accurately regulating the particle size of Ti(C,N)solid solution powder and reducing agglomeration,so as to promote the industrial application of Ti(C,N)-based cermets.
关 键 词:Ti(C N) 金属陶瓷 碳热还原氮化法 固溶体 粒度 纯度
分 类 号:TG148[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7