检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄昊冉 谷艳昌[1,2,3] 陈斯煜 王士军 黄海兵[1,2] HUANG Haoran;GU Yanchang;CHEN Siyu;WANG Shijun;HUANG Haibing(Dam Safety and Management Department,Nanjing Hydraulic Research Institute,Nanjing 210029,China;Dam Safety Management Center of the Ministry of Water Resources,Nanjing 210029,China;Key Laboratory of Flood&Drought Disaster Defense of the Ministry of Water Resources,Nanjing 210029,China)
机构地区:[1]南京水利科学研究院大坝安全与管理研究所,江苏南京210029 [2]水利部大坝安全管理中心,江苏南京210029 [3]水利部水旱灾害防御重点实验室,江苏南京210029
出 处:《水利学报》2025年第3期398-410,共13页Journal of Hydraulic Engineering
基 金:国家自然科学基金项目(51979175,52309157);南京水利科学研究院研究生学位论文基金项目(Yy724005);南京水利科学研究院中央级公益性科研院所基本科研业务费(Y723008,Y722003,Y723002)。
摘 要:机理模型预测评估土石坝渗流安全性态,物理意义明确、可解释性好,但是预测精度波动性较大。通过麻雀搜索算法(SSA)与径向基函数(RBF)对渗透系数进行反演并构建SSA-RBF渗压预测代理模型,得到模型预测值与残差序列;通过变分模态分解(VMD)将残差序列进行分解,并通过长短时记忆网络(LSTM)进行训练得到残差序列修正模型;将机理模型与数据驱动模型叠加构建得到SSA-RBF-VMD-LSTM融合模型,并实现对渗压水位准确预测。工程实例表明:本文提出的模型具有较高预测精度,相比于统计模型、LSTM模型和SSA-RBF-LSTM模型,其预测精度提高了89.64%、69.59%、60.45%,且在过程线出现较大幅度变动时,该模型仍能够及时给出准确的预测值,模型稳定性与外推能力较好,具有推广使用价值。The mechanistic models can predict and evaluate the seepage safety state of earth-rock dams,which offer clear physical meaning and good interpretations,but their prediction accuracy fluctuates greatly.To enhance this accuracy,a fusion model that incorporates a data-driven deep learning approach was introduce in this study,and the Sparrow Search Algorithm(SSA)and Radial Basis Function(RBF)were employed to invert the permeability coefficient.This process constructs an SSA-RBF surrogate model for predicting seepage pressure,yielding both the model’s predictive values and a residual sequence.Then,the residual sequence was decomposed by using Variational Mode Decomposition(VMD),training a Long Short-Term Memory(LSTM)neural network to obtain a model for correcting the residual sequence.By overlaying the mechanistic model with the data-driven model,an SSA-RBF-VMD-LSTM fusion model was constructed,which enables accurate predictions of seepage water levels.The engineering case demonstrates that the model proposed in this paper possesses high predictive accuracy,with improvements of 89.64%,69.59%,and 60.45%in prediction accuracy compared to statistical models,LSTM models,and SSA-RBF-LSTM models,respectively.Notably,even when the seepage process line undergoes significant fluctuations,the model is still capable of providing timely and accurate predictions,showcasing good stability and extrapolation capabilities.These attributes make the model worthy of practical application and dissemination.
关 键 词:土石坝 代理模型 麻雀搜索算法 变分模态分解 LSTM神经网络 机理-数据驱动融合
分 类 号:TV641[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49