A Privacy-Preserving Graph Neural Network Framework with Attention Mechanism for Computational Offloading in the Internet of Vehicles  

在线阅读下载全文

作  者:Aishwarya Rajasekar Vetriselvi Vetrian 

机构地区:[1]Department of Computer Science and Engineering,College of Engineering Guindy,Anna University,Chennai,600025,India

出  处:《Computer Modeling in Engineering & Sciences》2025年第4期225-254,共30页工程与科学中的计算机建模(英文)

摘  要:The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications.However,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles.Despite recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a concern.In this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is proposed.The Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as edges.Secondly,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)algorithm.Subsequently,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading inference.Finally,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively.

关 键 词:Internet of vehicles vehicular ad-hoc networks(VANET) multiaccess edge computing task offloading graph neural networks differential privacy 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象