检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mourad Benmalek Abdessamed Seddiki Kamel-Dine Haouam
机构地区:[1]Computer Engineering Department,College of Engineering,Al Yamamah University,Riyadh,11512,Saudi Arabia [2]Ecole Nationale Supérieure d’Informatique,BP 68M,Oued-Smar,Algiers,16309,Algeria
出 处:《Computer Modeling in Engineering & Sciences》2025年第4期1157-1184,共28页工程与科学中的计算机建模(英文)
摘 要:The Internet of MedicalThings(IoMT)connects healthcare devices and sensors to the Internet,driving transformative advancements in healthcare delivery.However,expanding IoMT infrastructures face growing security threats,necessitating robust IntrusionDetection Systems(IDS).Maintaining the confidentiality of patient data is critical in AI-driven healthcare systems,especially when securing interconnected medical devices.This paper introduces SNN-IoMT(Stacked Neural Network Ensemble for IoMT Security),an AI-driven IDS framework designed to secure dynamic IoMT environments.Leveraging a stacked deep learning architecture combining Multi-Layer Perceptron(MLP),Convolutional Neural Networks(CNN),and Long Short-Term Memory(LSTM),the model optimizes data management and integration while ensuring system scalability and interoperability.Trained on the WUSTL-EHMS-2020 and IoT-Healthcare-Security datasets,SNN-IoMT surpasses existing IDS frameworks in accuracy,precision,and detecting novel threats.By addressing the primary challenges in AI-driven healthcare systems,including privacy,reliability,and ethical data management,our approach exemplifies the importance of AI to enhance security and trust in IoMT-enabled healthcare.
关 键 词:Healthcare Internet of Medical Things artificial intelligence deep learning intrusion detection system
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7