Prediction and Comparative Analysis of Rooftop PV Solar Energy Efficiency Considering Indoor and Outdoor Parameters under Real Climate Conditions Factors with Machine Learning Model  

在线阅读下载全文

作  者:Gokhan Sahin Ihsan Levent Gültekin Isik Wilfriedvan Sark Sabir Rustemli 

机构地区:[1]Copernicus Institute of Sustainable Development,Utrecht University,Princetonlaan 8A,Utrecht,3584 CB,The Netherlands [2]Computer Engineering Department,Igdir University,Igdir,76000,Turkiye [3]Electronical and Electronic Engineering Department,Engineering Faculty,Bitlis Eren University,Bitlis,13100,Turkiye

出  处:《Computer Modeling in Engineering & Sciences》2025年第4期1215-1248,共34页工程与科学中的计算机建模(英文)

摘  要:This research investigates the influence of indoor and outdoor factors on photovoltaic(PV)power generation at Utrecht University to accurately predict PV system performance by identifying critical impact factors and improving renewable energy efficiency.To predict plant efficiency,nineteen variables are analyzed,consisting of nine indoor photovoltaic panel characteristics(Open Circuit Voltage(Voc),Short Circuit Current(Isc),Maximum Power(Pmpp),Maximum Voltage(Umpp),Maximum Current(Impp),Filling Factor(FF),Parallel Resistance(Rp),Series Resistance(Rs),Module Temperature)and ten environmental factors(Air Temperature,Air Humidity,Dew Point,Air Pressure,Irradiation,Irradiation Propagation,Wind Speed,Wind Speed Propagation,Wind Direction,Wind Direction Propagation).This study provides a new perspective not previously addressed in the literature.In this study,different machine learning methods such as Multilayer Perceptron(MLP),Multivariate Adaptive Regression Spline(MARS),Multiple Linear Regression(MLR),and Random Forest(RF)models are used to predict power values using data from installed PVpanels.Panel values obtained under real field conditions were used to train the models,and the results were compared.The Multilayer Perceptron(MLP)model was achieved with the highest classification accuracy of 0.990%.The machine learning models used for solar energy forecasting show high performance and produce results close to actual values.Models like Multi-Layer Perceptron(MLP)and Random Forest(RF)can be used in diverse locations based on load demand.

关 键 词:Machine learning model multi-layer perceptrons(MLP) random forest(RF) solar photovoltaic panel energy efficiency indoor and outdoor parameters forecasting 

分 类 号:TM615[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象