ParMamba:A Parallel Architecture Using CNN and Mamba for Brain Tumor Classification  

在线阅读下载全文

作  者:Gaoshuai Su HongyangLi Huafeng Chen 

机构地区:[1]College of Computer and Information Technology,China Three Gorges University,Yichang,443000,China [2]School of Computer Engineering,Jingchu University of Technology,Jingmen,448000,China

出  处:《Computer Modeling in Engineering & Sciences》2025年第3期2527-2545,共19页工程与科学中的计算机建模(英文)

基  金:supported by the Outstanding Youth Science and Technology Innovation Team Project of Colleges and Universities in Hubei Province(Grant no.T201923);Key Science and Technology Project of Jingmen(Grant nos.2021ZDYF024,2022ZDYF019);Cultivation Project of Jingchu University of Technology(Grant no.PY201904).

摘  要:Brain tumors,one of the most lethal diseases with low survival rates,require early detection and accurate diagnosis to enable effective treatment planning.While deep learning architectures,particularly Convolutional Neural Networks(CNNs),have shown significant performance improvements over traditional methods,they struggle to capture the subtle pathological variations between different brain tumor types.Recent attention-based models have attempted to address this by focusing on global features,but they come with high computational costs.To address these challenges,this paper introduces a novel parallel architecture,ParMamba,which uniquely integrates Convolutional Attention Patch Embedding(CAPE)and the Conv Mamba block including CNN,Mamba and the channel enhancement module,marking a significant advancement in the field.The unique design of ConvMamba block enhances the ability of model to capture both local features and long-range dependencies,improving the detection of subtle differences between tumor types.The channel enhancement module refines feature interactions across channels.Additionally,CAPE is employed as a downsampling layer that extracts both local and global features,further improving classification accuracy.Experimental results on two publicly available brain tumor datasets demonstrate that ParMamba achieves classification accuracies of 99.62%and 99.35%,outperforming existing methods.Notably,ParMamba surpasses vision transformers(ViT)by 1.37%in accuracy,with a throughput improvement of over 30%.These results demonstrate that ParMamba delivers superior performance while operating faster than traditional attention-based methods.

关 键 词:Brain tumor classification convolutional neural networks channel enhancementmodule convolutional attention patch embedding mamba ParMamba 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象