Quantum Inspired Adaptive Resource Management Algorithm for Scalable and Energy Efficient Fog Computing in Internet of Things(IoT)  

在线阅读下载全文

作  者:Sonia Khan Naqash Younas Musaed Alhussein Wahib Jamal Khan Muhammad Shahid Anwar Khursheed Aurangzeb 

机构地区:[1]Youth Office Haripur,Directorate of Youth Affairs,Government of Khyber Pakhtunkhwa,Haripur,22620,Pakistan [2]School of Software Engineering,Dalian University of Technology,Ganjingzi District,Dalian,116024,China [3]Department of Computer Engineering,College of Computer and Information Sciences,King Saud University,Riyadh,11543,Saudi Arabia [4]Department of AI and Software,Gachon University,Seongnam-si,13120,Republic of Korea

出  处:《Computer Modeling in Engineering & Sciences》2025年第3期2641-2660,共20页工程与科学中的计算机建模(英文)

基  金:funded by Researchers Supporting Project Number(RSPD2025R947);King Saud University,Riyadh,Saudi Arabia.

摘  要:Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resource bottlenecks and increased energy consumption.This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management(QIARM)model,which introduces novel algorithms inspired by quantum principles for enhanced resource allocation.QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.In addition,an energy-aware scheduling module minimizes power consumption by selecting optimal configurations based on energy metrics.The simulation was carried out in a 360-minute environment with eight distinct scenarios.This study introduces a novel quantum-inspired resource management framework that achieves up to 98%task offload success and reduces energy consumption by 20%,addressing critical challenges of scalability and efficiency in dynamic fog computing environments.

关 键 词:Quantum computing resource management energy efficiency fog computing Internet of Things 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象