基于SDFT的永磁电机高频注入策略  

High-Frequency Injection Strategy of Permanent Magnet Motor Based on SDFT

在线阅读下载全文

作  者:徐冲 黄鹤 伍浩坪 胡龙云 XU Chong;HUANG He;WU Haoping;HU Longyun(Shanghai Marine Diesel Engine Research Institute,Shanghai 201108,China;Shanghai Qiyao Heavy Industry Co.,Ltd.,Shanghai 201203,China)

机构地区:[1]上海船用柴油机研究所,上海201108 [2]上海齐耀重工有限公司,上海201203

出  处:《机电设备》2025年第2期59-65,共7页Mechanical and Electrical Equipment

摘  要:在永磁同步电机零低速运行工况下,传统无位置传感高频注入算法在获取转子位置时过多地使用带通滤波器和低通滤波器,使得电机转子相位延迟高,导致转子位置角度的估算精度较低,稳态和动态性能亦较低。为此,提出一种基于滑窗离散傅里叶变换(SDFT)算法的高频注入转子位置估算新方法,该方法通过使用SDFT观测结构,去除带通滤波器(BPF)和低通滤波器(LPF),降低转子的相位时延,提高系统的动态响应速度和转子位置估算精度。仿真试验结果表明:相比传统高频注入方法,所提方法的估算精度更高,动态响应速度更快,能够满足电机系统的稳定运行和动态响应要求。Under the zero-low speed operating conditions of permanent magnet synchronous motors,since traditional high-frequency injection algorithms for sensorless control rely heavily on band-pass filters and low-pass filters when acquiring the rotor position,the rotor phase delay is high,resulting in a relatively low estimation accuracy of the rotor position angle and inferior steady-state and dynamic performances.To address this issue,a novel high-frequency injection rotor position estimation method based on the sliding discrete Fourier transform(SDFT)algorithm is proposed.This method employs an SDFT observation structure to eliminate the band-pass filter(BPF)and low-pass filter(LPF),reducing the rotor phase time delay and enhancing the dynamic response speed of the system as well as the rotor position estimation accuracy.The simulation and experimental results demonstrate that,compared with traditional high-frequency injection methods,the proposed method offers higher estimation accuracy and faster dynamic response speed,and can meet the stable operation and dynamic response requirements of the motor system.

关 键 词:永磁同步电机 高频注入 滑窗离散傅里叶(SDFT)算法 转子位置提取 

分 类 号:TM464[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象