检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏琳 邹静[2] 许媚 Su Lin;Zou Jing;Xu Mei(School of Art and Design,Minnan University of Science and Technology,Quanzhou 362332,China;School of Computer Science and Technology,Guizhou University,Guiyang 550025,China;College of Education Sciences,Northwest Normal University,Lanzhou 730070,China)
机构地区:[1]闽南科技学院艺术设计学院,福建泉州362332 [2]贵州大学计算机科学与技术学院,贵阳贵州550025 [3]西北师范大学教育科学学院,甘肃兰州730070
出 处:《南京师大学报(自然科学版)》2025年第2期83-90,共8页Journal of Nanjing Normal University(Natural Science Edition)
基 金:福建省自然科学基金面上项目(2023J011406).
摘 要:随着虚拟现实(virtual reality,VR)技术的迅猛发展,对自然人机交互的需求日益增长,其中手势识别技术扮演着至关重要的角色.它不仅要求高度的准确性,还必须保证实时响应,以确保用户能够获得流畅的交互体验.本研究提出了一种创新的手势检测与跟踪方法,该方法基于改进的尺度不变特征变换(scale invariant feature transform,SIFT)特征匹配技术,专门针对VR环境中的手势识别进行了优化.首先,本文对SIFT算法进行了深入的改进,通过引入先进的描述子来增强特征的区分度,这使得算法能够更准确地捕捉到手势的关键特征.然后,为了进一步提升匹配的准确性,我们精心设计了特征匹配策略,优化了特征点之间的对应关系,确保了在复杂场景下也能实现高效匹配.最后,针对实时性的需求,本文开发了一套算法优化策略,通过调整算法流程和计算方式,确保了算法即使在动态和多变的环境中也能保持高效稳定的运行,从而满足了实时手势跟踪的应用需求.实验结果表明,所提模型的预测准确率为0.926,表现出了优异的预测性能.With the rapid development of virtual reality(VR)technology,the demand for natural human-computer interaction is increasing,and gesture recognition technology plays a crucial role.It not only requires high accuracy,but also must ensure real-time response to ensure that users can have a smooth interactive experience.This study proposes an innovative gesture detection and tracking method based on an improved Scale Invariant Feature Transform(SIFT)feature matching technique,specifically optimized for gesture recognition in VR environments.Firstly,this article has made in-depth improvements to the SIFT algorithm by introducing advanced descriptors to enhance feature discrimination,which enables the algorithm to more accurately capture key features of gestures.Then,in order to further improve the accuracy of matching,we carefully designed a feature matching strategy,optimized the correspondence between feature points,and ensured efficient matching even in complex scenes.Finally,in response to the real-time requirements,this article developed an algorithm optimization strategy that ensures efficient and stable operation of the algorithm even in dynamic and changing environments by adjusting the algorithm flow and calculation methods,thus meeting the application needs of real-time gesture tracking.The experimental results show that the prediction accuracy of the proposed model is 0.926,demonstrating excellent predictive performance.
关 键 词:虚拟现实 手势检测 改进SIFT算法 特征匹配 人机交互
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124