检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余肖生[1,2] 黄莺 张云涛 陈鹏[1,2] Yu Xiaosheng;Huang Ying;Zhang Yuntao;Chen Peng(Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering,China Three Gorges University,Yichang 443002,China;College of Computer and Information,China Three Gorges University,Yichang 443002,China)
机构地区:[1]三峡大学湖北省水电工程智能视觉监测重点实验室,宜昌443002 [2]三峡大学计算机与信息学院,宜昌443002
出 处:《数据分析与知识发现》2025年第3期127-135,共9页Data Analysis and Knowledge Discovery
基 金:国家重点研发计划资助项目(项目编号:2016YFC0802500)的研究成果之一。
摘 要:【目的】针对英文文本中存在多重嵌套和实体语义不明确的问题,提出一种融合单词多元信息的嵌套命名实体识别方法GTR-NNER。【方法】基于三仿射注意力引导的图卷积网络模块融合单词信息、单词位置信息、单词边界信息、单词标签信息以及语法信息,根据得到的多元信息进行跨度枚举,最后通过判别器完成实体识别。【结果】在两个嵌套数据集上进行10折交叉验证,GTR-NNER方法的平均F1值分别为84.38%和91.44%;在两个非完全嵌套数据集GENIA和ACE2005上,GTR-NNER方法的F1值分别为82.19%和89.27%。【局限】融合单词的多元信息致使模型的收敛速度变慢。【结论】在命名实体识别模型中结合单词的多元信息能够提高嵌套实体识别的效果,且实验结果证明本文融合单词多元信息的方法是有效的。[Objective]To address the challenges of multiple nested entities and semantic ambiguity in English texts,this study proposes a nested entity recognition method named GTR-NNER,which integrates multi-dimensional word information.[Methods]The proposed method employs a triaffine attention-guided graph convolutional network(GCN)module to integrate multiple types of word information,including word content,word position,word boundary,word label,and syntactic information.Based on the extracted multi-dimensional information,span enumeration is performed,followed by entity recognition through a discriminator.[Results]The proposed GTR-NNER method achieves an average F1 score of 84.38%and 91.44%on two nested NER datasets through 10-fold cross-validation.Additionally,on two partially nested datasets,GENIA and ACE2005,it attains F1 scores of 82.19%and 89.27%,respectively.[Limitations]The integration of multi-dimensional word information slows down the model’s convergence speed.[Conclusions]Incorporating multi-dimensional word information into NER models effectively enhances the performance of nested entity recognition.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7