检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张冬良 廖永安[1] 程戈[2] Zhang Dongliang;Liao Yongan;Cheng Ge(Law School,Xiangtan University,Xiangtan 411105,China;School of Computer Science&School of Cyberspace Science,Xiangtan University,Xiangtan 411105,China)
机构地区:[1]湘潭大学法学院,湘潭411105 [2]湘潭大学计算机学院·网络空间安全学院,湘潭411105
出 处:《数据分析与知识发现》2025年第3期136-146,共11页Data Analysis and Knowledge Discovery
基 金:国家重点研发计划项目(项目编号:2020YFC0832400);湖南省重点研发计划项目(项目编号:2022SK2108)的研究成果之一。
摘 要:【目的】针对当前案件相似度计算方法存在难以捕捉关键法律要素间长距离、全局和非连续的法律关系,以及文本相似但案件不相似的难分样本区分问题,提出一种更有效的案件相似度计算方法。【方法】构建案件知识图谱结构化表示案件事实,结合图卷积与双向长短期记忆网络编码案件知识图谱,感知主客体间复杂的法律关系,引入难/易混合的负样本挖掘机制提升区分难分样本的能力。【结果】在“中国法研杯”司法人工智能挑战赛提供的基准数据集上的实验表明,所提模型相较冠军模型准确率提升11个百分点,较基于注意力卷积神经网络方法提升7个百分点。【局限】案件知识图谱构建可能会影响相似度计算的效率,但可以通过离线图谱构建、节点预向量化等计算加速策略来克服。【结论】本方法能有效感知关键法律要素间复杂的法律关系,学习不同案件的区别与联系,提升案件相似度计算性能。[Objective]This paper proposes an enhanced case similarity calculation method,addressing the limitations of existing case similarity calculation methods in capturing long-distance,global,and discontinuous legal relationships between key legal elements,as well as the challenges in distinguishing between textually similar but legally dissimilar cases.[Methods]First,we constructed a case knowledge graph to structurally represent factual elements.Then,we combined graph convolutional networks with bidirectional long short-term memory networks to encode the graph and perceive complex legal relationships between subjects and objects.Finally,we introduced a hard/easy mixed negative sample mining mechanism to improve the model’s ability to distinguish difficult cases.[Results]Experiments conducted on the benchmark dataset provided by CAIL show that our proposed model outperforms the champion model by 11%and the optimal attention-based convolutional neural network method by 7%.[Limitations]The construction of the case knowledge graphs may affect the efficiency of similarity computation.However,this issue can be mitigated by strategies such as offline graph construction and node pre-vectorization.[Conclusions]Our method effectively perceives complex legal relationships between key legal elements,learns the distinctions and connections between different cases,and significantly improves the performance of case similarity computation.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3