检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Muhammad Arif Muhammad Rashid
机构地区:[1]Department of Computer Science and Artificial Intelligence,Umm Al-Qura University,Makkah Al-Mukarama,21955,Saudi Arabia [2]Department of Computer and Network Engineering,Umm Al-Qura University,Makkah Al-Mukarama,21955,Saudi Arabia
出 处:《Computers, Materials & Continua》2025年第4期13-64,共52页计算机、材料和连续体(英文)
摘 要:Edge Machine Learning(EdgeML)and Tiny Machine Learning(TinyML)are fast-growing fields that bring machine learning to resource-constrained devices,allowing real-time data processing and decision-making at the network’s edge.However,the complexity of model conversion techniques,diverse inference mechanisms,and varied learning strategies make designing and deploying these models challenging.Additionally,deploying TinyML models on resource-constrained hardware with specific software frameworks has broadened EdgeML’s applications across various sectors.These factors underscore the necessity for a comprehensive literature review,as current reviews do not systematically encompass the most recent findings on these topics.Consequently,it provides a comprehensive overview of state-of-the-art techniques in model conversion,inference mechanisms,learning strategies within EdgeML,and deploying these models on resource-constrained edge devices using TinyML.It identifies 90 research articles published between 2018 and 2025,categorizing them into two main areas:(1)model conversion,inference,and learning strategies in EdgeML and(2)deploying TinyML models on resource-constrained hardware using specific software frameworks.In the first category,the synthesis of selected research articles compares and critically reviews various model conversion techniques,inference mechanisms,and learning strategies.In the second category,the synthesis identifies and elaborates on major development boards,software frameworks,sensors,and algorithms used in various applications across six major sectors.As a result,this article provides valuable insights for researchers,practitioners,and developers.It assists them in choosing suitable model conversion techniques,inference mechanisms,learning strategies,hardware development boards,software frameworks,sensors,and algorithms tailored to their specific needs and applications across various sectors.
关 键 词:Edge machine learning tiny machine learning model compression INFERENCE learning algorithms
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49