检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mechanical Engineering,National Chung Hsing University,Taichung,402202,Taiwan,China
出 处:《Computers, Materials & Continua》2025年第4期97-114,共18页计算机、材料和连续体(英文)
摘 要:Precision steel balls are critical components in precision bearings.Surface defects on the steel balls will significantly reduce their useful life and cause linear or rotational transmission errors.Human visual inspection of precision steel balls demands significant labor work.Besides,human inspection cannot maintain consistent quality assurance.To address these limitations and reduce inspection time,a convolutional neural network(CNN)based optical inspection system has been developed that automatically detects steel ball defects using a novel designated vertical mechanism.During image detection processing,two key challenges were addressed and resolved.They are the reflection caused by the coaxial light onto the ball center and the image deformation appearing at the edge of the steel balls.The special vertical rotating mechanism utilizing a spinning rod along with a spiral track was developed to enable successful and reliable full steel ball surface inspection during the rod rotation.The combination of the spinning rod and the spiral rotating component effectively rotates the steel ball to facilitate capturing complete surface images.Geometric calculations demonstrate that the steel balls can be completely inspected through specific rotation degrees,with the surface fully captured in 12 photo shots.These images are then analyzed by a CNN to determine surface quality defects.This study presents a new inspection method that enables the entire examination of steel ball surfaces.The successful development of this innovative automated optical inspection system with CNN represents a significant advancement in inspection quality control for precision steel balls.
关 键 词:Steel ball surface defect inspection automated optical inspection convolutional neural network
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49