检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Haitao Wang Yuanzhao Guo Xiaotong Han Yuan Tian
机构地区:[1]School of Artificial Intelligence,Jilin University,Changchun,130012,China [2]Engineering Research Center of Knowledge-Driven Human-Machine Intelligence,MOE,Changchun,130012,China
出 处:《Computers, Materials & Continua》2025年第4期137-155,共19页计算机、材料和连续体(英文)
基 金:supported by the National Key Research and Development Program of China(No.2023YFF0905400);the National Natural Science Foundation of China(No.U2341229).
摘 要:Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low information density in dialogues,methods based on trigger enhancement have been proposed,yielding positive results.However,trigger enhancement faces challenges,which cause suboptimal model performance.First,the proportion of annotated triggers is low in DialogRE.Second,feature representations of triggers and arguments often contain conflicting information.In this paper,we propose a novel Multi-Feature Filtering and Fusion trigger enhancement approach to overcome these limitations.We first obtain representations of arguments,and triggers that contain rich semantic information through attention and gate methods.Then,we design a feature filtering mechanism that eliminates conflicting features in the encoding of trigger prototype representations and their corresponding argument pairs.Additionally,we utilize large language models to create prompts based on Chain-of-Thought and In-context Learning for automated trigger extraction.Experiments show that our model increases the average F1 score by 1.3%in the dialogue relation extraction task.Ablation and case studies confirm the effectiveness of our model.Furthermore,the feature filtering method effectively integrates with other trigger enhancement models,enhancing overall performance and demonstrating its ability to resolve feature conflicts.
关 键 词:Dialogue relation extraction feature filtering chain-of-thought
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49